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Preface 

Purpose and Goals 

Bioinformatics can refer to almost any collaborative effort between biologists or 
geneticists and computer scientists and thus covers a wide variety of traditional 
computer science domains, including data modeling, data retrieval, data mining, 
data integration, data managing, data warehousing, data cleaning, ontologies, sim- 
ulation, parallel computing, agent-based technology, grid computing, and visual- 
ization. However, applying each of these domains to biomolecular and biomedical 
applications raises specific and unexpectedly challenging research issues. 

In this book, we focus on data management and in particular data integration, 
as it applies to genomics and microbiology. This is an important topic because data 
are spread across multiple sources, preventing scientists from efficiently obtaining 
the information required to perform their research (on average, a pharmaceutical 
company uses 40 data sources). In this environment, answering a single question 
may require accessing several data sources and calling on sophisticated analysis 
tools (e.g., sequence alignment, clustering, and modeling tools). While data inte- 
gration is a dynamic research area in the database community, the specific needs 
of biologists have led to the development of numerous middleware systems that 
provide seamless data access in a results-driven environment (eight middleware 
systems are described in detail in this book). 

The objective of the book is to provide life scientists and computer scientists 
with a complete view on biological data management by: (1) identifying specific 
issues in biological data management, (2) presenting existing solutions from both 
academia and industry, and (3) providing a framework in which to compare these 
systems. 

Book Audience 

This book is intended to be useful to a wide audience. Students, teachers, bioin- 
formaticians, researchers, practitioners, and scientists from both academia and 
industry may all benefit from its material. It contains a comprehensive description 
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of issues for biological data management and an overview of existing systems, 
making it appropriate for introductory and instructional purposes. Developers 
not yet familiar with bioinformatics will appreciate descriptions of the numerous 
challenges that need to be addressed and the various approaches that have been 
developed to solve them. Bioinformaticians may find the description of existing 
systems and the list of challenges that remain to be addressed useful. Decision 
makers will benefit from the evaluation framework, which will aide in their selec- 
tion of the integration system that fits best the need of their research laboratory 
or company. Finally, life scientists, the ultimate users of these systems, may be 
interested in understanding how they are designed and evaluated. 

Topics and Organization 

The book is organized as follows: Four introductory chapters are followed by 
eight chapters presenting systems, an evaluation chapter, a summary, a glossary, 
and an appendix. 

The introduction further refines the focus of this book and provides a working 
definition of bioinformatics. It also presents the steps that lead to the development 
of an information system, from its design to its deployment. Chapter 2 introduces 
the challenges faced by the integration of biological information. Chapter 3 refines 
these challenges into use cases and provides life scientists a translation of their 
needs into technical issues. Chapter 4 illustrates why traditional approaches often 
fail to meet life scientists' needs. 

The following eight chapters each present an approach that was designed 
and developed to provide life scientists integrated access to data from a variety 
of distributed, heterogeneous data sources. The presented approaches provide a 
comprehensive overview of current technology. Each of these chapters is written by 
the main inventors of the presented system, specifies its requirements, and provides 
a description of both the chosen approach and its implementation. Because of the 
self-contained nature of these chapters, they may be read in any order. Chapter 13 
provides users and developers with a methodology to evaluate presented systems. 
Such a methodology may be used to select the system most appropriate for an 
organization, to compare systems, or to evaluate a system developed in-house. 
The summary reiterates the state-of-the-art, existing solutions and new challenges 
that need to be addressed. 

The appendix contains a list of useful biological resources (databases, orga- 
nizations, and applications) organized in three tables. The acronyms commonly 
used to refer to them and used in the chapters of this book are spelled out, and 
current URLs are provided so that readers can access complete information. 
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Each of the chapters uses various technical terms. Because these terms involve 
expertise in life science and computer science, a glossary providing the spelling of 
acronyms or short definitions is provided at the end of the book. 
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Introduction 

Zob Lacroix and Terence Critchlow 

1.1 OVERVIEW 

Bioinformatics and the management of scientific data are critical to support life 
science discovery. As computational models of proteins, cells, and organisms 
become increasingly realistic, much biology research will migrate from the wet- 
lab to the computer. Successfully accomplishing the transition to biology in silico, 
however, requires access to a huge amount of information from across the research 
community. Much of this information is currently available from publicly acces- 
sible data sources, and more is being added daily. Unfortunately, scientists are not 
currently able to identify easily and exploit this information because of the variety 
of semantics, interfaces, and data formats used by the underlying data sources. 
Providing biologists, geneticists, and medical researchers with integrated access 
to all of the information they need in a consistent format requires overcoming a 
large number of technical, social, and political challenges. 

As a first step in helping to understand these issues, the book provides an 
overview of the state of the art of data integration and interoperability in genomics. 
This is accomplished through a detailed presentation of systems currently in use 
and under development as part of bioinformatics efforts at several organizations 
from both industry and academia. While each system is presented as a stand-alone 
chapter, the same questions are answered in each description. By highlighting a 
variety of systems, we hope not only to expose the different alternatives that are ac- 
tively being explored, but more importantly, to give insight into the strengths and 
weaknesses of each approach. Given that an ideal bioinformatics environment re- 
mains an unattainable dream, compromises need to be made in the development 
of any real-world system. Understanding the tradeoffs inherent in different ap- 
proaches, and combining that knowledge with specific organizational needs, is the 
best way to determine which alternative is most appropriate for a given situation. 

Because we hope this book will be useful to both computer scientists and 
life scientists with varying degrees of familiarity with bioinformatics, three intro- 
ductory chapters put the discussion in context and establish a shared vocabulary. 
The challenges faced by this developing technology for the integration of biological 
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information are presented in Chapter 2. The complexity of use cases and the 
variety of techniques needed to support these needs are exposed in Chapter 3. 
This chapter also discusses the translation from specification to design, including 
the most common issues raised when performing this transformation in the life 
sciences domain. The difficulty of face-to-face communication between demand- 
ing users and developers is evoked in Chapter 4, in which examples are used to 
highlight the difficulty involved in directly transferring existing data management 
approaches to bioinformatics systems. These chapters describe the nuances that 
differentiate real-world bioinformatics from technology transferred from other do- 
mains. Whereas these nuances may be skeptically viewed as simple justifications 
for working on solved problems, they are important because bioinformatics occurs 
in the real world, complete with its ugly realities, not in an abstract environment 
where convenient assumptions can be used to simplify problems. 

These introductory chapters are followed by the heart of this book, the 
descriptions of eight distinct bioinformatics systems. These systems are the re- 
suits of collaborative efforts between the database community and the genomics 
community to develop technology to support scientists in the process of scientific 
discovery. Systems such as Kleisli (Chapter 6) were developed in the early stages of 
bioinformatics and matured through meetings on the Interconnection of Molecu- 
lar Biology Databases (the first of the series was organized at Stanford University 
in the San Francisco Bay Area, August 9-12, 1994). Others, such as DiscoveryLink 
(Chapter 11), are recent efforts to adapt sophisticated data management technol- 
ogy to specific challenges facing bioinformatics. Each chapter has been written by 
the primary contributor(s) to the system being described. This perspective provides 
precious insight into the specific problem being addressed by the system, why the 
particular architecture was chosen, its strengths, and any weakness it may have. To 
provide an overall summary of these approaches, advantages and disadvantages 
of each are summarized and contrasted in Chapter 13. 

1.2 PROBLEM AND SCOPE 

In the last decade, biologists have experienced a fundamental revolution from tra- 
ditional research and development (R&D) consisting in discovering and 
understanding genes, metabolic pathways, and cellular mechanisms to large-scale, 
computer-based R&D that simulates the disease, the physiology, the molecular 
mechanisms, and the pharmacology [1]. This represents a shift away from life 
science's empirical roots, in which it was an iterative and intuitive process. Today 
it is systematic and predictive with genomics, informatics, automation, and minia- 
turization all playing a role [2]. This fusion of biology and information science 



is expected to continue and expand for the foreseeable future. The first conse- 
quence of this revolution is the explosion of available data that biomolecular 
researchers have to harness and exploit. For example, an average pharmaceutical 
company currently uses information from at least 40 databases [1], each contain- 
ing large amounts of data (e.g., as of June 2002, GenBank [3, 4] provides access 
to 20,649,000,000 bases in 17,471,000 sequences) that can be analyzed using a 
variety of complex tools such as FASTA [5], BLAST [6], and LASSAP [7]. 

Over the past several years, bioinformatics has become both an all- 
encompassing term for everything relating to computer science and biology, and a 
very trendy one. 1 There are a variety of reasons for this including: (1) As computa- 
tional biology evolves and expands, the need for solutions to the data integration 
problems it faces increases; (2) the media are beginning to understand the impli- 
cations of the genomics revolution that has been going on for the last 15 or more 
years; (3) the recent headlines and debates surrounding the cloning of animals 
and humans; and (4) to appear cutting edge, many companies have relabeled the 
work that they are doing as bioinformatics, and similarly many people have be- 
come bioinformaticians instead of geneticists, biologists, or computer scientists. 
As these events have occurred, the generally accepted meaning of the word bioin- 
formatics has grown from its original definition of managing genomics data to 
include topics as diverse as patient record keeping, molecular simulations of pro- 
tein sequences, cell and organism level simulations, experimental data analysis, 
and analysis of journal articles. A recent definition from the National Institutes of 
Health (NIH) phrases it this way: 

Bioinformatics is the field of science in which biology, computer  science, and in- 

formation technology merge to form a single discipline. The ultimate goal of the 
field is to enable the discovery of new biological insights as well as to create a 
global perspective from which unifying principles in biology can be discerned. [8] 

This definition could be rephrased as: Bioinformatics is the design and develop- 
ment of computer-based technology that supports life science. Using this definition, 
bioinformatics tools and systems perform a diverse range of functions including: 
data collection, data mining, data analysis, data management, data integration, 
simulation, statistics, and visualization. Computer-aided technology directly sup- 
porting medical applications is excluded from this definition and is referred to 
as medical informatics. This book is not an attempt at authoritatively describing 

1. The sentence claims that computer science is relating to biology. Whenever one refers to this "rela- 
tionship," one uses the term bioinformatics. 
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the gamut of information contained in this field. Instead, it focuses on the area 
of genomics data integration, access, and interoperability as these areas form the 
cornerstone of the field. However, most of the presented approaches are generic 
integration systems that can be used in many similar scientific contexts. 

This emphasis is in line with the original focus of bioinformatics, which was on 
the creation and maintenance of data repositories (flat files or databases) to store 
biological information, such as nucleotide and amino acid sequences. The develop- 
ment of these repositories mostly involved schema design issues (data organization) 
and the development of interfaces whereby scientists could access, submit, and re- 
vise data. Little or no effort was devoted to traditional data management issues 
such as storage, indexing, query languages, optimization, or maintenance. The 
number of publicly available scientific data repositories has grown at an exponen- 
tial rate, to the point where, in 2000, there were thousands of public biomolecular 
data sources. In 2003, Baxevanis listed 372 key databases in molecular biology 
only [9]. Because these sources were developed independently, the data they con- 
tain are represented in a wide variety of formats, are annotated using a variety of 
methods, and may or may not be supported by a database management system. 

1.3 BIOLOGICAL DATA INTEGRATION 

Data integration issues have stymied computer scientists and geneticists alike for 
the last 20 years, and yet successfully overcoming them is critical to the success of 
genomics research as it transitions from a wet-lab activity to an electronic-based 
activity as data are used to drive the increasingly complicated research performed 
on computers. This research is motivated by scientists striving to understand not 
only the data they have generated, but more importantly, the information implicit 
in these data, such as relationships between individual components. Only through 
this understanding will scientists be able to successfully model and simulate entire 
genomes, cells, and ultimately entire organisms. 

Whereas the need for a solution is obvious, the underlying data integration 
issues are not as clear. Chapter 4 goes into detail about the specific computer 
science problems, and how they are subtly different from those encountered in 
other areas of computer science. Many of the problems facing genomics data 
integration are related to data semantics~the meaning of the data represented in 
a data source~and the differences between the semantics within a set of sources. 
These differences can require addressing issues surrounding concept identifica- 
tion, data transformation, and concept overloading. Concept identification and 
resolution has two components: identifying when data contained in different data 
sources refer to the same object and reconciling conflicting information found in 
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these sources. Addressing these issues should begin by identifying which abstract 
concepts are represented in each data source. Once shared concepts have been 
identified, conflicting information can be easily located. As a simple example, two 
sources may have different values for an attribute that is supposed to be the same. 
One of the wrinkles that genomics adds to the reconciliation process is that there 
may not be a "right" answer. Consider that a sequence representing the same gene 
should be identical in two different data sources. However, there may be legiti- 
mate differences between two sources, and these differences need to be preserved 
in the integrated view. This makes a seemingly simple query, "return tbe sequence 
associated witb tbis gene," more complex than it first appears. 

In the case where the differences are the result of alternative data formats, 
data transformations may be applied to map the data to a consistent format. 
Whereas mapping may be simple from a technical perspective, determining what 
it is and when to apply it relies on the detailed representation of the concepts and 
appropriate domain knowledge. For example, the translation of a protein sequence 
from a single-character representation to a three-character representation defines a 
corresponding mapping between the two representations. Not all transformations 
are easy to performmand some may not be invertible. Furthermore, because of 
concept overloading, it is often difficult to determine whether or not two abstract 
concepts really have the same meaningmand to figure out what to do if they do 
not. For example, although two data sources may both represent genes as DNA 
sequences, one may include sequences that are postulated to be genes, whereas the 
other may only include sequences that are known to code for proteins. Whether or 
not this distinction is important depends on a specific application and the semantics 
that the unified view is supporting. The number of subtly distinct concepts used 
in genomics and the use of the same name to refer to multiple variants makes 
overcoming these conflicts difficult. 

Unfortunately, the semantics of biological data are usually hard to define 
precisely because they are not explicitly stated but are implicitly included in the 
database design. The reason is simple: At a given time, within a single research 
community, common definitions of various terms are often well understood and 
have precise meaning. As a result, the semantics of a data source are usually 
understood by those within that community without needing to be explicitly de- 
fined. However, genomics (much less all of biology or life science) is not a single, 
consistent scientific domain; it is composed of dozens of smaller, focused research 
communities. This would not be a significant issue if researchers only accessed data 
from within a single domain, but that is not usually the case. Typically, researchers 
require integrated access to data from multiple domains, which requires resolving 
terms that have slightly different meanings across the communities. This is further 
complicated by the observations that the specific community whose terminology 
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is being used by the data source is usually not explicitly identified and that the 
terminology evolves over time. For many of the larger, community data sources, 
the domain is obvious~the Protein Data Bank (PDB) handles protein structure 
information, the Swiss-Prot protein sequence database provides protein sequence 
information and useful annotations, etc.~but the terminology used may not be 
current and can reflect a combination of definitions from multiple domains. The 
terminology used in smaller data sources, such as the drosophila database, is typ- 
ically selected based on a specific usage model. Because this model can involve 
using concepts from several different domains, the data source will use whatever 
definitions are most intuitive, mixing the domains as needed. 

Biology also demonstrates three challenges for data integration that are com- 
mon in evolving scientific domains but not typically found elsewhere. The first 
is the sheer number of available data sources and the inherent heterogeneity of 
their contents. The World Wide Web has become the preferred approach for dis- 
seminating scientific data among researchers, and as a result, literally hundreds 
of small data sources have appeared over the past 10 years. These sources are 
typically a "labor of love" for a small number of people. As a result, they often 
lack the support and resources to provide detailed documentation and to respond 
to community requests in a timely manner. Furthermore, if the principal supporter 
leaves, the site usually becomes completely unsupported. Some of these sources 
contain data from a single lab or project, whereas others are the definitive reposi- 
tories for very specific types of information (e.g., for a specific genetic mutation). 
Not only do these sources complicate the concept identification issue previously 
mentioned (because they use highly specialized data semantics), but their number 
make it infeasible to incorporate all of them into a consistent repository. 

Second, the data formats and data access methods (associated interfaces) 
change regularly. Many data providers extend or update their data formats 
approximately every 6 months, and they modify their interfaces with the same 
frequency. These changes are an attempt to keep up with the scientific evolution 
occurring in the community at large. However, a change in a data source represen- 
tation can have a dramatic impact on systems that integrate that source, causing 
the integration to fail on the new format or worse, introducing subtle errors into 
the systems. As a result of this problem, bioinformatics infrastructures need to be 
more flexible than systems developed for more static domains. 

Third, the data and related analysis are becoming increasingly complex. As 
the nature of genomics research evolves from a predominantly wet-lab activity 
into knowledge-based analysis, the scientists' need for access to the wide variety 
of available information increases dramatically. To address this need, information 
needs to be brought together from various heterogeneous data sources and pre- 
sented to researchers in ways that allow them to answer their questions. This means 
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providing access not only to the sequence data that is commonly stored in data 
sources today, but also to multimedia information such as expression data, expres- 
sion pathway data, and simulation results. Furthermore, this information needs 
to be available for a large number of organisms under a variety of conditions. 

1.4 DEVELOPING A BIOLOGICAL DATA 
INTEGRATION SYSTEM 

The development of a biological data integration and management system has to 
overcome the difficulties outlined in Section 1.3. However, there is no obvious 
best approach to doing this, and thus each of the systems presented in this book 
addresses these issues differently. Furthermore, comparing and contrasting these 
systems is extremely difficult, particularly without a good understanding of how 
they were developed. This is because the goals of each system are subtly different, 
as reflected by the system requirements defined at the outset of the design process. 
Understanding the development environment and motivation behind the initial 
system constraints is critical to understanding the tradeoffs that were made later 
in the design process and the reasons why. 

1.4.1 Specifications 
The design of a system starts with collecting requirements that express, among 
other things: 

�9 Who the users of the system will be 

�9 What functionality the system is expected to have 

�9 How this functionality is to be viewed by the users 

�9 The performance goals for the system 

System requirements (or specifications) describe the desired system and can be 
seen as a contract agreed upon by the target users (or their surrogates) and the 
developers. Furthermore, these requirements can be used to determine if a delivered 
system performs properly. 

The user profile is a concise description of who the target users for a system are 
and what knowledge and experience they can be assumed to have. Specifying the 
user profile involves agreeing on the level of computer literacy expected of users 
(e.g., Are there programmers helping the scientists access the data? Are the users 
expected to know any programming language?), the type of interface the users will 



1 Int roduct ion 

1.4.2 

have (e.g., Will there be a visual interface? A user customizable interface?), the 
security issues that need to be addressed, and a multitude of other concerns. 

Once the user profile is defined, the tasks the system is supposed to perform 
must be analyzed. This analysis consists in listing all the tasks the system is expected 
to perform, typically through use  cases,  and involves answering questions such as: 
What are the sources the system is expected to integrate? Will the system allow 
users to express queries? If so, in what form and how complex will they be? Will the 
system incorporate scientific applications? Will it allow users to navigate scientific 
objects? 

Finally, technical issues must be agreed upon. These issues include the plat- 
forms the system is expected to work on (i.e., UNIX, Microsoft, Macintosh), its 
scalability (i.e., the amount of data it can handle, the number of queries it can 
simultaneously support, and the number of data sources that can be integrated), 
and its expected efficiency with respect to data storage size, communication over- 
head, and data integration overhead. 

The collection of these requirements is traditional to every engineering task. 
However, in established engineering areas there are often intermediaries that 
initially evaluate the needs for new technology and significantly facilitate the def- 
inition of system specifications. Unfortunately, this is not the case in life sciences. 
Although technology is required to address complex user needs, the scientists 
generally directly communicate their needs to the system designers. While com- 
munication between specialists in different domains is inherently difficult, bioin- 
formatics faces an additional challengemthe speed at which the underlying science 
is evolving. A common result of this is that both scientists and developers become 
frustrated. Scientists are frustrated because systems are not able to keep up with 
their ever-changing requirements, and developers are frustrated because the re- 
quirements keep changing on them. The only way to overcome this problem is 
to have an intermediary between the specialists. A common goal can be formu- 
lated and achieved by forging a bridge between the communities and accurately 
representing the requirements and constraints of both sides. 

Translating Specifications into a Technical 
Approach 

Once the specifications have been agreed upon, they can be translated into a set 
of approaches. This can be thought of as an optimization problem in which the 
hard constraints define a feasibility region, and the goal is to minimize the cost of 
the system while maximizing its usefulness and staying within that region. Each 
attribute in the system description can be mapped to a dimension. Existing data 
management approaches can then be mapped to overlapping regions in this space. 
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Once the optimal location has been identified, these approaches can be used as a 
starting point for the implementation. 

Obviously, this problem is not always formally specified, but considering it in 
this way provides insight into the appropriate choices. For example, in the dimen- 
sion of storage costs, two alternatives can be considered: materializing the data 
and not materializing it. The materialized approach collects data from various 
sources and loads them into a single system. This approach is often closely related 
to a data warehousing approach and is favored when the specifications include 
characteristics such as data curation, infrequent data updates, high reliability, and 
high levels of security. The non-materialized approach integrates all the resources 
by collecting the requested data from the distributed data sources at query execu- 
tion time. Thus, if the specifications require up-to-date data or the ability to easily 
include new resources in the integration, a non-materialized approach would be 
more appropriate. 

1.4.3 

1.4.4 

Development Process 
The system development implements the approaches identified in Section 1.4.2, 
possibly extending them to meet specific constraints. System development is 
often an iterative process in which the following steps are repeatedly performed 
as capabilities are added to the system: 

�9 Code design: describing the various software components/objects and their 
respective capabilities 

�9 Implementation: actually writing the code and getting it to execute properly 

�9 Testing: evaluating the implementation, identifying and correcting bugs 

�9 Deployment: transferring the code to a set of users 

The formal deployment of a system often includes an analysis of the tests and 
training the users. The final phases are the system migration and the operational 
process. More information on managing a programming project can be found in 
Managing a Programming Project~Processes and People [10]. 

Evaluation of the System 
Two systems may have the same specifications and follow the same approach yet 
end up with radically different implementations. The eight systems presented in 
the book (Chapters 5 through 12) follow various approaches. Their design and im- 
plementation choices lead to vastly different systems. These chapters provide few 
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details on the numerous design and implementation decisions and instead focus 
on the main characteristics of their systems. This will provide some insight into 
the vast array of tradeoffs that are possible while still developing feasible systems. 

There are several metrics by which a system can be evaluated. One of the most 
obvious is whether or not it meets its requirements. However, once the specifica- 
tions are satisfied, there are many characteristics that reflect a system's perfor- 
mance. Although similar criteria may be used to compare two systems that have 
the same specifications, these same criteria may be misleading when the specifica- 
tions differ. As a result, evaluating systems typically requires insight into the system 
design and implementation and information on users' satisfaction. Although such 
a difficult task is beyond the scope of this book, in Chapter 13 we outline a set of 
criteria that can be considered a starting point for such an evaluation. 
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2 
CHAPTER 

Challenges Faced in the 
Integration of Biological 

Information 

Su Yun Chung and John C. Wooley 

Biologists, in attempting to answer a specific biological question, now frequently 
choose their direction and select their experimental strategies by way of an initial 
computational analysis. Computers and computer tools are naturally used to col- 
lect and analyze the results from the largely automated instruments used in the 
biological sciences. However, far more pervasive than this type of requirement, the 
very nature of the intellectual discovery process requires access to the latest version 
of the worldwide collection of data, and the fundamental tools of bioinformatics 
now are increasingly part of the experimental methods themselves. A driving force 
for life science discovery is turning complex, heterogeneous data into useful, orga- 
nized information and ultimately into systematized knowledge. This endeavor is 
simply the classic pathway for all science, Data =~ Information =~ Knowledge =~ 
Discovery, which earlier in the history of biology required only brainpower and 
pencil and paper but now requires sophisticated computational technology. 

In this chapter, we consider the challenges of information integration in biol- 
ogy from the perspective of researchers using information technology as an integral 
part of their discovery processes. We also discuss why information integration is 
so important for the future of biology and why and how the obstacles in biology 
differ substantially from those in the commercial sector~that is, from the expec- 
tations of traditional business integration. In this context, we address features 
specific to the biological systems and their research approaches. We then discuss 
the burning issues and unmet needs facing information integration in the life sci- 
ences. Specifically, data integration, meta-data specification, data provenance and 
data quality, ontology, and Web presentations are discussed in subsequent sections. 
These are the fundamental problems that need to be solved by the bioinformatics 
community so that modern information technology can have a deeper impact on 
the progress of biological discovery. This chapter raises the challenges rather than 
trying to establish specific, ideal solutions for the issues involved. 
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2.1 THE LIFE SCIENCE DISCOVERY PROCESS 

In the last half of the 20th century, a highly focused, hypothesis-driven approach 
known as reductionist molecular biology gave scientists the tools to identify and 
characterize molecules and cells, the fundamental building blocks of living systems. 
To understand how molecules, and ultimately cells, function in tissues, organs, 
organisms, and populations, biologists now generally recognize that as a commu- 
nity they not only have to continue reductionist strategies for the further elucida- 
tion of the structure and function of individual components, but they also have 
to adopt a systems-level approach in biology. Systems analysis demands not just 
knowledge of the partsmgenes, proteins, and other macromolecular entitiesmbut 
also knowledge of the connection of these molecular parts and how they work 
together. In other words, the pendulum of bioscience is now swinging away from 
reductionist approaches and toward synthetic approaches characteristic of sys- 
tems biology and of an integrated biology capable of quantitative and/or detailed 
qualitative predictions. A synthetic or integrated view of biology obviously will 
depend critically on information integration from a variety of data sources. For 
example, neuroinformatics includes the anatomical and physiological features of 
the nervous system, and it must interact with the molecular biological databases 
to facilitate connections between the nervous system and molecular details at the 
level of genes and proteins. 1 In phylogeny and evolution biology, comparative ge- 
nomics is making new impacts on evolutionary studies. Over the past two decades, 
research in evolutionary biology has come to depend on sequence comparisons at 
the gene and protein level, and in the future, it will depend more and more on 
tracking not just DNA sequences but how entire genomes evolve over time [1]. In 
ecology there is an opportunity ultimately to study the sequences of all genomes 
involved in an entire ecological community. We believe integration bioinformatics 
will be the backbone of 21st-century life sciences research. 

Research discovery and synthesis will be driven by the complex information 
arising intrinsically from biology itself and from the diversity and heterogeneity 
of experimental observations. The database and computing activities will need 
to be integrated to yield a cohesive information infrastructure underlying all of 
biology. A conceptual example of how biological research has increasingly come 
to depend on the integration of experimental procedures and computation activ- 
ities is illustrated in Figure 2.1. A typical research project may start with a col- 
lection of known or unknown genomic sequences (see Genomics in Figure 2.1). 
For unknown sequences, one may conduct a database search for similar sequences 

1. For information about neuroinformatics, refer to the Human Brain Project at the National Institute 
of Mental Health (http-//www.nimh.nih.gov/neuroinformatics/abs.cfm). 
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2.1 

FIGURE 

Information-driven discovery. 

or use various gene-finding computer algorithms or genome comparisons to predict 
the putative genes. To probe expression profiles of these genes/sequences, high- 
density microarray gene expression experiments may be carried out. The analysis 
of expression profiles of up to 100,000 genes can be conducted experimentally, 
but this requires powerful computational correlation tools. Typically, the first 
level of experimental data stream output for a microarray experiment (labora- 
tory information management system [LIMS] output) is a list of genes/sequences/ 
identification numbers and their expression profile. Patterns or correlations within 
the massive data points are not obvious by manual inspection. Different computa- 
tional clustering algorithms are used simultaneously to reduce the data complexity 
and to sort out relationships among genes/sequences according to their expression 
levels or changes in expression levels. 

These clustering techniques, however, have to deal with a high-dimensional 
data element space; the possibility for correlation by chance is high because a set 
of genes clustered together does not necessarily imply participation in a common 
biological process. To back up the clustering results, one may proceed to pro- 
teomics (see Figure 2.1) to connect the gene expression results with available 
protein expression patterns, known protein structures and functions, and protein- 
protein interaction data. Ultimately, the entire collection of interrelated macro- 
molecular information may be considered in the context of systems biology (see 
Figure 2.1), which includes analyses of protein or metabolic pathways, regu- 
latory networks, and other, more complex cellular processes. The connections 
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and interactions among areas of genomics, gene expression profiles, proteomics, 
and systems biology depend on the integration of experimental procedures with 
database searches and the applications of computational algorithms and analysis 
tools. 

As one moves up in the degree of complexity of the biological processes under 
study, our understanding at each level depends in a significant way on the levels 
beneath it. In every step, database searches and computational analysis of the data 
are an integral part of the discovery process. As we choose complex systems for 
study, experimentally generated data must be combined with data derived from 
databases and computationally derived models or simulations for best interpreta- 
tion. On the other hand, modeling and simulation of protein-protein interactions, 
protein pathways, genetic regulatory networks, biochemical and cellular processes, 
and normal and disease physiological states are in their infancy and need more 
experimental observations to fill in missing quantitative details for mature efforts. 
In this close interaction, the boundaries between experimentally generated data 
and computationally generated data are blurring. Thus, accelerating progress now 
requires multidisciplinary teams to conduct integrated approaches. Thus, in silico 
discovery, that is, experiments carried out with a computer, is fully complemen- 
tary to traditional wet-laboratory experiments. One could say that an information 
infrastructure, coupled with continued advances in experimental methods, will 
facilitate computing an understanding of biology. 

2.2 AN INFORMATION INTEGRATION 
ENVIRONMENT FOR LIFE SCIENCE DISCOVERY 

Biological data sources represent the collective research efforts and products of 
the life science communities throughout the world. The growth of the Internet and 
the availability of biological data sources on the Web have opened up a tremen- 
dous opportunity for biologists to ask questions and solve problems in unprece- 
dented ways. To harness these community resources and assemble all available 
information to investigate specific biological problems, biologists must be able to 
find, extract, merge, and synthesize information from multiple, disparate sources. 
Convergence of biology, computer science, and information technology (IT)will 
accelerate this multidisciplinary endeavor. The basic needs are: 

1. On demand access and retrieval of the most up-to-date biological data and the 
ability to perform complex queries across multiple heterogeneous databases 
to find the most relevant information 
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2. Access to the best-of-breed analytical tools and algorithms for extraction of 
useful information from the massive volume and diversity of biological data 

3. A robust information integration infrastructure that connects various com- 
putational steps involving database queries, computational algorithms, and 
application software 

This multidisciplinary approach demands close collaboration and clear under- 
standing between people with extremely different domain knowledge and skill 
sets. The IT professionals provide the knowledge of syntactic aspects of data, 
databases, and algorithms, such as how to search, access, and retrieve relevant 
information, manage and maintain robust databases, develop information inte- 
gration systems, model biological objects, and support a user-friendly graphical 
interface that allows the end user to view and analyze the data. The biologists pro- 
vide knowledge of biological data, semantic aspects of databases, and scientific 
algorithms. Interpreting biological relationships requires an understanding of the 
biological meaning of the data beyond the physical file or table layout. Particularly, 
the effective usage of scientific algorithms or analytical tools (e.g., sequence align- 
ment, protein structure prediction, and other analysis software) depends on having 
a working knowledge of the computer programs and of biochemistry, molecular 
biology, and other scientific disciplines. Before we can discuss biological informa- 
tion integration, we need first to consider the specific nature of biological data and 
data sources. 

2.3 THE NATURE OF BIOLOGICAL DATA 

The advent of automated and high-throughput technologies in biological research 
and the progress in the genome projects has led to an ever-increasing rate of data 
acquisition and exponential growth of data volume. However, the most striking 
feature of data in life science is not its volume but its diversity and variability. 

2.3.1 Diversity 
The biological data sets are intrinsically complex and are organized in loose hier- 
archies that reflect our understanding of the complex living systems, ranging from 
genes and proteins, to protein-protein interactions, biochemical pathways and 
regulatory networks, to cells and tissues, organisms and populations, and finally 
the ecosystems on earth. This system spans many orders of magnitudes in time and 
space and poses challenges in informatics, modeling, and simulation equivalent to 
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FIGURE 

Notional representation of the vast and complex biological world. 

or beyond any other scientific endeavor. A notional description of the vast scale of 
complexity, population, time, and space in the biological systems is given in Figure 
2.2 [2]. Reflecting the complexity of biological systems, the types of biological data 
are highly diverse. They range from the plain text of laboratory records and liter- 
ature publications, nucleic acid and protein sequences, three-dimensional atomic 
structures of molecules, and biomedical images with different levels of resolutions, 
to various experimental outputs from technology as diverse as microarray chips, 
gels, light and electronic microscopy, Nuclear Magnetic Resonance (NMR), and 
mass spectrometry. The horizontal abscissa in Figure 2.2 shows time scales rang- 
ing from femtoseconds to eons that represent the processes in living systems from 
chemical and biochemical reactions, to cellular events, to evolution. The vertical 
ordinate shows the numerical scale, the range of number of atoms involved in 
molecular biology, the number of macromolecules in cellular biology, the num- 
ber of cells in physiological biology, and the number of organisms in population 
biology. The third dimension indicated by rectangles illustrates the hierarchical na- 
ture of biology from subcellular structures to ecosystems. The fourth dimension, 
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indicated by ovals, represents the current state of computation biology in modeling 
and simulation of biological systems. 

2.3.2 Variability 
Different individuals and species vary tremendously, so naturally biological data 
does also. For example, structure and function of organs vary across age and 
gender, in normal and different disease states, and across species. Essentially, all 
features of biology exhibit some degree of variability. Biological research is in an 
expanding phase, and many fields of biology are still in the developing stages. 
Data for these systems are incomplete and very often inconsistent. This presents 
a great challenge in modeling biological objects. 

2.4 DATA SOURCES IN LIFE SCIENCE 

In response to current advances in technology and research scope, massive amounts 
of data are routinely deposited in public and private databases. In parallel, there 
is a proliferation of computational algorithms and analysis tools for data analysis 
and visualization. Because most databases are accompanied by specific computa- 
tional algorithms or tools for analysis and presentation and vice versa, we use the 
term data source to refer to a database or computational analysis tool or both. 
There are more than 1000 life science data sources scattered over the Internet 
(see the Biocatalog and the Public Catalog of Databases), and these data sources 
vary widely in scope and content. Finding the right data sources alone can be 
a challenge. Searching for relevant information largely relies on a Web informa- 
tion retrieval system or on published catalog services. Each January, the Journal 
of Nucleic Acid Research provides a yearly update of molecular biology database 
collections. The current issue lists 335 entries in molecular biology databases alone 
[3]. Various Web sites provide a catalog and links to biological data sources (see 
"biocat" and "dbcat" cited previously). In addition to the public sources, there 
are numerous private, proprietary data sources created by biotechnology or phar- 
maceutical companies. 

The scope of the public data sources ranges from the comprehensive, multidis- 
ciplinary, community informatics center, supported by government public funds 
and sustained by teams of specialists, to small boutique data sources by indi- 
vidual investigators. The content of databases varies greatly, reflecting the broad 
disciplines and sub-disciplines across life sciences from molecular biology and cell 
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biology, to medicine and clinical trials, to ecology and biodiversity. A sampling of 
various public biological databases is given in the Appendix. 

2.4.1 Biological Databases Are Autonomous 
Biological data sources represent a loose collection of autonomous Web sites, each 
with its own governing body and infrastructure. These sites vary in almost every 
possible instance such as computer platform, access, and data management system. 
Much of the available biological data exist in legacy systems in which there are no 
structured information management systems. These data sources are inconsistent 
at the semantic level, and more often than not, there is no adequate attendant 
meta-data specification. Until recently, biological databases were not designed for 
interoperability [4]. 

2.4.2 Biological Databases Are Heterogeneous 
in Data Formats 

Data elements in public or proprietary databases are stored in heterogeneous data 
formats ranging from simple files to fully structured database systems that are of- 
ten ad hoc, application-specific, or vendor-specific. For example, scientific litera- 
ture, images, and other free-text documents are commonly stored in unstructured 
or semi-structured formats (plain text files, HTML or XML files, binary files). 
Genomic, microarray gene expression, and proteomic data are routinely stored 
in conventional spreadsheet programs or in structured relational databases (Or- 
acle, Sybase, DB2, Informix). Major data depository centers have implemented 
various data formats for operations; the National Center for Biotechnology Infor- 
mation (NCBI) has adopted the highly nested data system ASN.1 (Abstract Syntax 
Notation) for the general storage of gene, protein, and genomic information [5]; 
the United States Department of Agriculture (USDA) Plant Genome Data and In- 
formation Center has adopted the object-oriented, A C. elegans Data Base (Ace 
DB) data management systems and interface [6]. 

2.4.3 Biological Data Sources Are Dynamic 
In response to the advance of biological research and technology, the overall fea- 
tures of biological data sources are subjected to continuous changes including 
data content and data schema. New databases spring up at a rapid rate and older 
databases disappear. 
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2.4.4 Computational Analysis Tools Require 
Specific Input/Output Formats and Broad 
Domain Knowledge 

Computational software packages often require specific input and output data 
formats and graphic display of results, which pose serious compatibility and inter- 
operability issues. The output of one program is not readily suitable as direct input 
for the next program or for a subsequent database search. Development of a stan- 
dard data exchange format such as XML will alleviate some of the interoperability 
issues. 

Understanding application semantics and the proper usages of computer soft- 
ware is a major challenge. Currently, there are more than 500 software packages 
or analysis tools for molecular biology alone (reviewed in the Biocatalog at the 
European Bioinformatics Institute [EBI] Web site given previously). These pro- 
grams are extremely diverse, ranging from nucleic and protein sequence analysis, 
genome comparison, protein structure prediction, biochemical pathway and ge- 
netic network analysis, and construction of phylogenetic trees, to modeling and 
simulation of biological systems and processes. These programs, developed to 
solve specific biological problems, rely on input from other domain knowledge 
such as computer science, applied mathematics, statistics, chemistry, and physics. 
For example, protein folding can be approached using ab initio prediction based 
on first principles (physics) or on knowledge-based (computer science) thread- 
ing methods [7]. Many of these software packages, particularly those available 
through academic institutions, lack adequate documentation describing the algo- 
rithm, functionality, and constraints of the program. Given the multidisciplinary 
nature and the scope of domain knowledge, proper usage of a scientific analysis 
program requires significant (human) expertise. It is a daunting task for the end 
users to choose and evaluate the proper software programs for analyses, so they 
will be able to understand and interpret the results. 

2.5 CHALLENGES IN INFORMATION INTEGRATION 

With the expansion of the biological data sources available across the World 
Wide Web, integration is a new, major challenge facing researchers and insti- 
tutions that wish to explore these rich deposits of information. Data integration 
is an ongoing active area in the commercial world. However, information integra- 
tion in biology must consider the characteristics of the biological data and data 
sources as discussed in the previous two sections (2.3 and 2.4):(1) diverse data are 
stored in autonomous data sources that are heterogeneous in data formats, data 
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FIGURE 

Integration of experimental data, data derived from multiple database queries, 
and applications of scientific algorithms and computational analysis tools (Refer 
to the Appendix for the definitions of acronyms). 

management systems, data schema, and semantics; (2) analysis of biological data 
requires both database query activities and proper usage of computational analy- 
sis tools; (3) a broad spectrum of knowledge domains divide traditional biological 
disciplines. 

For a typical research project, a user must be able to merge data derived 
from multiple, diverse, heterogeneous sources freely and readily. As illustrated in 
Figure 2.3, the LIMS output from microarray gene expression experiments must 
be interpreted and analyzed in the context of the information and tools avail- 
able across the Internet, including genomic data, literature, clinical data, analysis 
algorithms, etc. In many cases, data retrieved from several databases may be 
selected, filtered, and transformed to prepare input data sets for particular 
analytic algorithms or applications. The output of one program may be submitted 
as input to another program and/or to another database search. The integra- 
tion process involves an intricate network of multiple computational steps and 
data flow. Information integration in biology faces challenges at the technology 
level for data integration architectures and at the semantic level for meta-data 
specification, maintenance of data provenance and accuracy, ontology develop- 
ment for knowledge sharing and reuse, and Web presentations for communication 
and collaboration. 
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2 . 5 . 1  Data Integration 
First-generation bioinformatics solutions for data integration employ a series of 
non-interoperable and non-scalable quick fixes to translate data from one format 
into another. This means writing programs, usually in programming language 
such as Perl, to access, parse, extract, and transform necessary data for particu- 
lar applications. Writing a translation program requires intensive coding efforts 
and knowledge of the data and structures of the source databases. These ad hoc 
point-to-point solutions are very inefficient and are not scalable to the large num- 
ber of data sources to be integrated. This is dubbed the N 2 factor because it 
would require N (N-1)/2 programs to connect N data sources. If one particular 
data source changes formats, all of the programs involved with this data source 
must be upgraded. Upgrades are inevitable because changes in Web page services 
and schema are very common for biological data sources. 

The second generation of data integration solutions provides a more struc- 
tured environment for code re-use and flexible, scalable, robust integration. Over 
the past decade, enormous efforts and progress have been made in many data inte- 
gration systems. They can be roughly divided into three major categories according 
to access and architectures: the data warehousing approach, the distributed or fed- 
erated approach, and the mediator approach. However, the following fundamental 
functions or features are desirable for a robust data integration system: 

1. Accessing and retrieving relevant data from a broad range of disparate data 
s o u r c e s  

2. Transforming the retrieved data into designated data model for integration 

3. Providing a rich common data model for abstracting retrieved data and pre- 
senting integrated data objects to the end user applications 

4. Providing a high-level expressive language to compose complex queries across 
multiple data sources and to facilitate data manipulation, transformation, and 
integration tasks 

5. Managing query optimization and other complex issues 

The Data Warehouse Approach 
The data warehouse approach assembles data sources into a centralized system 
with a global data schema and an indexing system for integration and naviga- 
tion. The data warehouse world is dominated by relational database management 
systems (RDBMS), which offer the advantage of a mature and widely accepted 
database technology and a high level standard query language (SQL) [8]. These 
systems have proven very successful in commercial enterprises, health care, and 
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government sectors for resource management such as payroll, inventory, and 
records. They require reliable operation and maintenance, and the underlying 
databases are under a controlled environment, are fairly stable, and are structured. 
The biological data sources are very different from those contained in the com- 
mercial databases. The biological data sources are much more dynamic and un- 
predictable, and few of the public biological data sources use structured database 
management systems. Given the sheer volume of data and the broad range of bi- 
ological databases, it would require substantial effort to develop any monolithic 
data warehouses encompassing diverse biological information such as sequence 
and structure and the various functions of biochemical pathways and genetic poly- 
morphisms. As the number of databases in a data warehouse grows, the cost of 
storage, maintenance, and updating data will be prohibitive. A data warehouse 
has an advantage in that the data are readily accessed without Internet delay or 
bandwidth limitation in network connections. Vigorous data cleansing to remove 
potential errors, duplications, and semantic inconsistency can be performed be- 
fore entering data in the warehouse. Thus, limited data warehouses are popular 
solutions in the life sciences for data mining of large databases, in which carefully 
prepared data sets are critical for success [9]. 

The Federation Approach 
The distributed or federated integration approaches do not require a centralized 
persistent database, and thus the underlying data sources remain autonomous. The 
federated systems maintain a common data model and rely on schema mapping 
to translate heterogeneous source database schema into the target schema for 
integration. A data dictionary is used to manage various schema components. 
In the life science arena, in which schema changes in data sources are frequent, 
the maintenance of a common schema for integration could be costly in large 
federated systems. As the database technology progresses from relational toward 
object-oriented technology [10], many distributed integration solutions employ 
object-oriented paradigms to encapsulate the heterogeneity of underlying data 
sources in life science. These systems typically rely on client-server architectures 
and software platforms or interfaces such as Common Object Request Broker 
Architecture (CORBA), an open standards by the Object Management Group 
(OMG) to facilitate interoperation of disparate components [11, 12]. 

The Mediator Approach 
The most flexible data integration designs adopt a mediator approach that in- 
troduces an intermediate processing layer to decouple the underlying heteroge- 
neous distributed data sources and the client layer of end users and applications. 



The mediator layer is a collection of software components performing the task of 
data integration. The concept was first introduced by Wiederhold to provide flex- 
ible modular solutions for integration of large information systems with multiple 
knowledge domains [13, 14]. 

Most database mediator systems use a wrappers layer to handle the tasks of 
data access, data retrieval, and data translation. The wrappers access specified data 
sources, extract selected data, and translate source data formats into a common 
data model designated for the integration system. 

The mediator layer performs the core function of data transformation and 
integration and communicates with the wrappers and the user application layer. 
The integration system provides an internal common data model for abstraction 
of incoming data derived from heterogeneous data sources. Thus, the internal 
data model must be sufficiently rich to accommodate various data formats of 
existing biological data sources, which may include unstructured text files, semi- 
structured XML and HTML files, and structured relational, object-oriented, and 
nested complex data models. In addition, the internal data model facilitates struc- 
turing integrated biological objects to present to the user application layer. The flat, 
tabular forms of the relational model encounter severe difficulty in model complex 
and hierarchical biological systems and concepts. XML and other object-oriented 
models are more natural in model biological systems and are gaining popularity 
in the community. 

In addition to the core integration function, the mediator layer also provides 
services such as filtering, managing meta-data, and resolving semantic inconsis- 
tency in source databases. Ideally, instead of relying on low-level programming 
efforts, a full integration system supports a high-level query language for data 
transformation and manipulation. This would greatly facilitate the composition of 
complex queries across multiple data sources and the management of architecture 
layers and software components. 

The advantage of the mediator approach is its flexibility, scalability, and mod- 
ularity. The heterogeneity and dynamic nature of the data sources is isolated 
from the end user applications. Wrappers can readily handle data source schema 
changes. New data sources can be added to the system by simply adding new 
wrappers. Scientific analytical tools are simply treated as data sources via wrap- 
pers and can be seamlessly integrated with database queries. This approach is most 
suitable for scientific investigations that need to access the most up-to-date data 
and issue queries against multiple heterogeneous data sources on demand. 

There are many flavors of mediator approaches in life science domains, which 
differ in database technologies, implementations, internal data models, and query 
languages. The Kleisli system provides an internal, nested, complex data model 
and a high-power query and transformation laslguage for data integration [15-17]. 
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The K2 system shares many design principles with Kleisli in supporting a complex 
data model, but it adopts more object-oriented features [18, 19] (see Chapter 8). 
The Object-Protocol Model (OPM) supports a rich object model and a global 
schema for data integration [20, 21]. The IBM DiscoveryLink middleware system 
is rooted in the relational database technology and supports a full SQL3 [22, 23] 
(see Chapter 11). The Transparent Access to Multiple Bioinformatics Information 
Sources (TAMBIS) provides a global ontology to facilitate queries across multiple 
data sources [24, 25] (see Chapter 7). The Stanford-IBM Manager of Multiple 
Information Sources (TSIMMIS) is a mediation system for information integration 
with its own data model, the Object-Exchange Model (OEM), and query language 
[26]. 

Meta-Data Specification 
Meta-data is data describing data, that is, data that provides documentation on 
other data managed within an application or environment. 

In a structured database environment, the meta-data are formally included in 
the data schema and type definition. However, few of the biomedical databases use 
commercial, structured database management systems. The majority of biological 
data are stored and managed in collections of flat files in which the structure and 
meaning of the data are not well documented. Furthermore, most biological data 
are presented to the end users as loosely structured Web pages, even with those 
databases that have underlying structured database management systems (DBMS). 

Many biological data sources provide keyword-search querying interfaces 
with which a user can input specified Boolean combinations of search terms to 
access the underlying data. Formulating effective Boolean queries requires domain 
expertise and knowledge of the contents and structure of the databases. Without 
meta-data specification, users are likely to formulate queries that return no answers 
or return an excessively large number of irrelevant answers. In such unstructured 
or semi-structured data access environments, the introduction of meta-data in the 
databases across the Web would be important for information gathering and to 
enhance the user's ability to capture the relevant information independent of data 
formats. 

The need for adequate meta-data specification for scientific analytical algo- 
rithms and software tools is particularly acute. Very little attention has been given 
to meta-data specification in existing programs, especially those available in the 
public domain from academic institutions. In general, they lack adequate docu- 
mentation on algorithms, data formats, functionality, and constraints. This could 
lead to potential misunderstanding of computational tools by the end users. For 
example, sequence comparison programs are the most commonly used tools to 
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search similar sequences in databases. There are many such programs in the public 
and private domains. The Basic Local Alignment Tool (BLAST) uses heuristic ap- 
proximation algorithms to search for related sequences against the databases [27]. 
BLAST has the advantage of speed in searching very large databases and is a widely 
used tool. Very often it is an overly used tool in the molecular biology community. 
The BLAST program trades speed for sensitivity and may not be the best choice 
for all purposes. The Smith-Waterman dynamic programming algorithm, which 
strives for optimal global sequence alignment, is more sensitive in finding distantly 
related sequences [28]. However, it requires substantial computation power and 
a much slower search speed (50-fold or more). Recently, a number of other pro- 
grams have been developed using hidden Markov models, Bayesian statistics, and 
neural networks for pattern matching [29]. In addition to algorithmic differences, 
these programs vary in accuracy, statistical scoring system, sensitivity, and per- 
formance. Without an adequate meta-data specification, it would be a challenge 
for users to choose the most appropriate program for their application, let alone 
to use the optimal parameters to interpret the results properly and evaluate the 
statistical significance of the search results. 

In summary, with the current proliferation of biological data sources over the 
Internet and new data sources constantly springing up around the world, there 
is an urgent need for better meta-data specification to enhance our ability to find 
relevant information across the Web, to understand the semantics of scientific 
application tools, and to integrate information. Ultimately, the communication 
and sharing of biological data will follow the concept and development of the 
Semantic Web [30]. 2 The Resource Description Format (RDF) schema developed 
by the Semantic Web offers a general model for meta-data applications such that 
data sources on the Web can be linked and be understood by both humans and 
computers. 3 

2.5.3 Data Provenance and Data Accuracy 
As databases move to the next stage of development, more and more secondary 
databases with value-added annotations will be developed. Many of the data 
providers will also become data consumers. Data provenance and data accuracy 
become major issues as the boundaries among primary data generated experimen- 
tally, data generated through application of scientific analysis programs, and data 

2. See also http://www.w3.org/2OO1/sw. 

3.The RDF Schema is given and discussed at http://www.w3.org/RDF/overview.html and 
h ttp'//www.w3, or g/D esi gn Issues/Semantic.h tml. 
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derived from database searches will be blurred. When users find and examine a 
set of data from a given database, they will have to be concerned about where the 
data came from and how the data were generated. 

One example of this type of difficulty can be seen with the genome annotation 
pipeline. The raw experimental output of DNA sequences needs to be character- 
ized and analyzed to turn into useful information. This may involve the application 
of sequence comparison programs or a sequence similarity search against existing 
sequence databases to find similar sequences that have been studied in other species 
to infer functions. For genes/sequences with unknown function, gene prediction 
programs can be used to identify open reading frames, to translate DNA sequences 
into protein sequences, and to characterize promoter and regulatory sequence mo- 
tifs. For genes/sequences that are known, database searches may be performed to 
retrieve relevant information from other databases for protein structure and pro- 
tein family classification, genetic polymorphism and disease, literature references, 
and so on. The annotation process involves computational filtering, transforming, 
and manipulating of data, and it frequently requires human efforts in correction 
and curation. 

Thus, most curated databases contain data that have been processed with 
specific scientific analysis programs or extracted from other databases. Describing 
the provenance of some piece of data is a complex issue. These annotated databases 
offer rich information and have enormous value, yet they often fail to keep an 
adequate description of the provenance of the data they contain [31]. 

With increasingly annotated content, databases become interdependent. 
Errors caused by data acquisition and handling in one database can be propagated 
quickly into other databases, or data updated in one database may not be imme- 
diately propagated to the other related databases. At the same time, differences in 
annotations of the same object may arise in different databases because of the ap- 
plication of different scientific algorithms or to different interpretations of results. 

Scientific analysis programs are well known to be extremely sensitive to input 
datasets and the parameters used in computation. For example, a common prac- 
tice in annotation of an unknown sequence is to infer that similar sequences share 
common biochemical function or a common ancestor in evolution. The use of 
different algorithms and different cut-off values for similarity could potentially 
yield different results for remotely related sequences. Other forms of evidence 
are required to resolve the inconsistency. This type of biological reasoning also 
points to another problem. Biological conclusions derived by inference in one 
database will be propagated and may no longer be reliable after numerous 
transitive assertions. 

Data provenance touches the issue of data accuracy and reliability. It is critical 
that databases provide meta-data specification on how the data are generated and 
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derived. This has to be as rigorous as the traditional standards for experimental 
data for which the experimental methods, conditions, and material are provided. 
Similarly, computationally generated data should be documented with the com- 
putational conditions involved, including algorithms, input datasets, parameters, 
constraints, and so on. 

Ontology 
On top of the syntactic heterogeneity of data sources, one of the major stumbling 
blocks in information integration is at the semantic level. In naming and termi- 
nology alone, there are inconsistencies across different databases and within the 
same database. In the major literature database MEDLINE, multiple aliases for 
genes are the norm, rather than the exception. There are cases in which the same 
name refers to different genes that share no relationship with each other. Even the 
term gene itself has different meanings in different databases, largely because it has 
different meanings in various scientific disciplines; the geneticists, the molecular 
biologists, and the ecologists have different concepts at some levels about genes. 

The naming confusion partly stems from the isolated, widely disseminated na- 
ture of life science research work. At the height of molecular cloning of genes in the 
1980s and 1990s, research groups that cloned a new gene had the privilege of nam- 
ing the gene. Very often, laboratories working on very different organisms or bio- 
logical systems independently cloned genes that turned out to encode the same pro- 
tein. Consequently, various names for the same gene are populated in the published 
scientific literature and in databases. Biological scientists have grown accustomed 
to the naming differences. This becomes an ontology issue when information and 
knowledge are represented in electronic form because of the necessity of commu- 
nication between human and computers and between computer and computer. 
For the biological sciences community, the idea and the use of the term ontology 
is relatively new, and it generates controversy and confusion in discussions. 

What Is an Ontology? 
The term ontology was originally a philosophical term that referred to "the sub- 
ject of existence." The computer science community borrowed the term ontology 
to refer to a "specification of a conceptualization" for knowledge sharing in ar- 
tificial intelligence [32]. An ontology is defined as a description of concepts and 
relationships that exist among the concepts for a particular domain of knowledge. 
In the world of structured information and databases, ontologies in life science 
provide controlled vocabularies for terminology as well as specifying object classes, 
relations, and functions. Ontologies are essential for knowledge sharing and com- 
munications across diverse scientific disciplines. 
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Throughout the history of the field, the biology community has made a contin- 
uous effort to strive for consensus in classifications and nomenclatures. 
The Linnaean system for naming of species and organisms in taxonomy is one of 
the oldest ontologies. The nomenclature committee for the International Union of 
Pure and Applied Chemistry (IUPAC) and the International Union of Biochemistry 
and Molecular Biology (IUBMB) make recommendations on organic, biochemi- 
cal, and molecular biology nomenclature, symbols, and terminology. The National 
Library of Medicine Medical Subject Headings (MESH) provides the most compre- 
hensive controlled vocabularies for biomedical literature and clinical records. The 
Systematized Nomenclature of Medicine International, a division of the College 
of American Pathologists, oversees the development and maintenance of a com- 
prehensive and multi-axial controlled terminology for medicine and clinical infor- 
mation known as SNOMED. 

Development of standards is and always has been complex and contentious 
because getting agreement has been a long and slow process. The computer and 
IT communities dealt with software standards long before the life science commu- 
nity. Recently, the Object Management Group (OMG), an established organiza- 
tion in the IT community, established a life sciences research group (LSR) to im- 
prove communication and interoperability among computational resources in life 
sciences. 4 LSR uses the OMG technology adoption process to standardize models 
and interfaces for software tools, services, frameworks, and components in life 
sciences research. 

Because of its longer history and diverse scientific disciplines and constituents, 
developing standards in the life science community is harder than doing so in the 
information technology community. Besides the great breadth of academic and 
research communities in the life sciences, some fields of biology are a century 
or more older than molecular biology. Thus, the problems are sociological and 
technological. Standardization further requires a certain amount of stability and 
certainty in the knowledge content of the field. In contrast, the level, extent, and 
nature of biological knowledge is still extensively, even profoundly, dynamic in 
content. The meaning attached to a term may change over time as new facts are 
discovered that are related to that term. So far, the attempts to standardize the 
gene names alone have met a tremendous amount of resistance across different 
biological communities. The Gene Nomenclature Committee (HGNC) led by the 
Human Genome Organization (HUGO) made tremendous progress to standardize 

4. This is discussed on the OMG Web site: http://Isr.omg.org. OMG is an open-membership, not- 
for-profit consortium that produces and maintains computer industry specifications for interoperable 
enterprise application. 
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gene names for humans with the support of the mammalian genetics community 
[33]. However, the attempt to expand the naming standard across other species 
turned out to be more difficult [34]. Researchers working in different organisms 
or fields have their own established naming usages, and it takes effort to convert 
to a new set of standards. 

An ontology is domain-knowledge specific and context dependent. For ex- 
ample, the term v e c t o r  differs (not surprisingly or problematically) in meaning 
between its usage in biology and in the physical sciences, as in a mathematical 
vector. However, within biology, the specific meaning of a term also can be quite 
different: Molecular biologists use v e c t o r  to mean a vehicle, as in cloning vector, 
whereas parasitologists use v e c t o r  to refer to an organism as an agent in transmis- 
sion of disease. Thus, the development of ontologies is a community effort and 
the adoption of a successful ontology must have wide endorsement and participa- 
tion of the users. The ecological and biodiversity communities have made major 
efforts in developing meta-data standards, common taxonomy, and structural vo- 
cabulary for their Web site with the help of the National Science Foundation 
and other government agencies [35]. 5 The molecular biology community encom- 
passes a much more diverse collection of sub-disciplines, and for researchers in 
the molecular biology domain, reaching a community-wide consensus is much 
harder. To circumvent these issues, there is a flurry of grassroots movements to 
develop ontologies in specific areas or research such as sequence analysis, gene 
expression, protein pathways, and so on [36]. 6 These group or consortium efforts 
usually adopt a use case and open source approach for community input. The 
ontologies are not meant to be mandatory, but instead they serve as a reference 
framework to go forward for further development. For example, one of the major 
efforts in molecular biology is the Gene Ontology (GO) consortium, which stems 
from the annotation projects for the fly genome and the human genome. Its goal 
is to design a set of structured, controlled vocabularies to describe genes and gene 
products in organisms [37]. Currently, the GO consortium is focused on building 
three ontologies for molecular function, biological process, and cellular compo- 
nents, respectively. These ontologies will greatly facilitate queries across genetic 
and genome databases. The GO consortium started with the core group from the 
genome databases for the fruit fly, FlyBase; budding yeast, Saccharomyces Genome 
Database (SGD); and mouse genome database (MGD). It is gaining momentum 
with growing participants from other genome databases. With such a grassroots 

5. See also http'//www.nbii.gov/disciplines/systematics.html, a general systematics site, and http.//www. 
fgdc.gov, for geographic data. 
6. See the work by the gene expression ontology working group at http.//www.mged.org. 
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approach, interactions between different domain ontologies are critical in future 
development. For example, brain ontology will inevitably relate to ontologies of 
other anatomical structures or at the molecular level will share ontologies for 
genes and proteins [38]. A sample collection of ontology resources in life science 
is listed in the Appendix. 

A consistent vocabulary is critical in querying across multiple data sources. 
However, given the diverse domains of knowledge and specialization of scientific 
disciplines, it is not foreseeable that in the near future a global, common ontology 
covering broad biological disciplines will be developed. Instead, in biomedical 
research alone, there will be multiple ontologies for genomes, gene expression, 
proteomes, and so on. Semantic interoperability is an active area of research in 
computer science [39]. Information integration across multiple biological disci- 
plines and sub-disciplines would depend on the close collaborations of domain 
experts and IT professionals to develop algorithms and flexible approaches to 
bridge the gaps among multiple biological ontologies. 

W e b  P r e s e n t a t i o n s  

Much of the biological data is delivered to end users via the Web. Currently, the 
biological Web sites resemble a collection of rival medieval city-states, each with 
its own design, accession methods, query interface, services, and data presentation 
format [40]. Much of the data retrieval efforts in information integration rely on 
brittle, screen scraping methods to parse and extract data from HTML files. In 
an attempt to reduce redundancy and share efforts, an open source movement 
in the bioinformatics community has began to share various scripts for parsing 
HTML files from popular data sources such as GenBank report [3], Swiss-Prot 
report [41], and so forth. 

Recently, the biological IT community has been picking up momentum to 
adopt the merging XML technology for biological Web services and for exchange 
of data. Many online databases already make their data available in XML format. 7 
Semi-structured XML supports user-defined tags to hold data, and thus an XML 
document contains both data and meta-data. The ability for data sources to ex- 
change information in an XML document strictly depends on their sharing a spe- 
cial document known as Data Type Declaration (DTD), which defines the terms 
(names for tags) and their data types in the XML document [42]. Therefore, DTD 
serve as data schema and can be viewed as a very primitive ontology in which 
DTD defines a set of terms, but not the relationship between terms. XML will 

7. See the Distributed System Annotation, http://www.biodas.org, and the Protein Information Re- 
source, http://nbrfa.georgetown.edu/pir/databases/pir_xml. 
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ease some of the incompatibility problems of data sources, such as data formats. 
However, semantic interoperability and consistency remain a serious challenge. 
With the autonomous nature of life science Web sites, one can envision that 
the naming space of DTD alone could easily create an alphabet soup of con- 
fusing terminology as encountered in the naming of genes. Recently, there has 
been a proliferation of XML-based markup languages to represent models of bi- 
ological objects and to facilitate information exchange within specific research 
areas such as microarray and gene expression markup language, 8 systems biol- 
ogy markup language, 9 and bio-polymer markup language. 1~ Many of these are 
available through the XML open standard organization. 11 However, we caution 
that development of such documents must be compatible with existing biological 
ontologies or viewed as a concerted community effort. 

:7 7 - _ -  : . :  CONCLUSION 

IT professionals and biologists have to work together to address the level of chal- 
lenges presented by the inherent complexity and vast scales of time and space 
covered by the life sciences. The opportunities for biological science research 
in the 21st century require a robust, comprehensive information integration in- 
frastructure underlying all aspects of research. As discussed in the previous sec- 
tions, substantial progress has been made for data integration at the technical and 
architectural level. However, data integration at the semantic level remains a major 
challenge. Before we will be able to seize any of these opportunities, the biology 
and bioinformatics communities have to overcome the current limitations in meta- 
data specification, maintenance of data provenance and data quality, consistent 
semantics and ontology, and Web presentations. Ultimately, the life science com- 
munity must embrace the concept of the Semantic Web [30] as a web of data that 
is understandable by both computers and people. The bio-ontology efforts for 
the life sciences represent one important step toward this goal. The brave, early 
efforts to build computational solutions for biological information integration are 
discussed in subsequent chapters of this book. 

8. The MicroArray and Gene Expression (MAGE) markup language is being developed by the Mi- 
croarray Gene Expression Data Society (see http'//www.mged.org/Workgroups/mage.html). 
9. The Systems Biology Workbench (SBW) is a modular framework designed to facilitate data ex- 
change by enabling different tools to interact with each other (see http://www.cds.caltech.edu/erato). 
10. The Biopolymer Markup Language (BioML) is an XML encoding schema for the annotation of 
protein and nucleic acid sequence (see http'//www.bioml.com). 
11. OASIS is an international, not-for-profit consortium that designs and develops industry standard 
specifications for interoperability based on XML. 
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3 
CHAPTER 

A Practitioner's G uide 
to Data Management 
and Data Integration 

in Bioinformatics 

Barbara A. Eckman 

3.1 INTRODUCTION 

Integration of a large and widely diverse set of data sources and analytical meth- 
ods is needed to carry out bioinformatics investigations such as identifying and 
characterizing regions of functional interest in genomic sequence, inferring biolog- 
ical networks, and identifying patient sub-populations with specific beneficial or 
toxic reactions to therapeutic agents. A variety of integration tools are available, 
both in the academic and the commercial sectors, each with its own particular 
strengths and weaknesses. Choosing the right tools for the task is critical to the 
success of any data integration endeavor. But the wide variety of available data 
sources, integration approaches, and vendors makes it difficult for users to think 
clearly about their needs and to identify the best means of satisfying them. This 
chapter introduces use cases for biological data integration and translates them 
into technical challenges. It introduces terminology and provides an overview of 
the landscape of integration solutions, including many that are detailed in other 
chapters of this book, along with a means of categorizing and understanding 
individual approaches and their strengths and weaknesses. 

This chapter is written from the point of view of a bioinformatician practic- 
ing database integration, with the hope that it will be useful for a wide variety 
of readers, from biologists who are unfamiliar with database concepts to more 
computationally experienced bioinformaticians. A basic familiarity with common 
biological data sources and analysis algorithms is assumed throughout. 

The chapter is organized as follows. Section 3.2 introduces traditional data- 
base terms and concepts. Those already familiar with these concepts may want to 
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skim that section and begin reading at Section 3.3, which introduces multiple di- 
mensions to integration, thus intermediate terminology. Section 3.4 presents var- 
ious use cases for integration solutions. Strengths and weaknesses of integration 
approaches are given in Section 3.5. Section 3.6 is devoted to tough integration 
problems. Therefore, computer scientists and information technologists may ben- 
efit from the advanced problems evoked in Section 3.6. 

The goal of this chapter is to convey a basic understanding of the variety of 
data management problems and needs in bioinformatics; an understanding of the 
variety of integration strategies currently available, and their strengths and weak- 
nesses; an appreciation of some difficult challenges in the integration field; and the 
ability to evaluate existing or new integration approaches according to six general 
categories or dimensions. Armed with this knowledge, practitioners will be well 
prepared to identify the tools that are best suited to meet their individual needs. 

3.2 DATA MANAGEMENT IN BIOINFORMATICS 

Data is arguably the most important commodity in science, and its management 
is of critical importance in bioinformatics. One introductory textbook defines 
bioinformatics as "the science of creating and managing biological databases to 
keep track of, and eventually simulate, the complexity of living organisms" [1]. 
If the central task of bioinformatics is the computational analysis of biological 
sequences, structures, and relationships, it is crucial that biological sequence and 
all associated data be accurately captured, annotated, and maintained, even in the 
face of rapid growth and frequent updates. It is also critical to be able to retrieve 
data of interest in a timely manner and to define and retrieve data of interest 
precisely enough to separate effectively its signal from the distracting noise of 
irrelevant or insignificant data. 

3.2.1 Data Management Basics 
To begin the discussion of data management in bioinformatics, basic terms and 
concepts will be introduced by means of use cases, examples or scenarios of 
familiar data management activities. The term database will be used both as "a 
collection of data managed by a database management system" (DBMS) and, more 
generally, when concepts of data representation are presented, regardless of how 
the data is managed or stored. Otherwise, the term data collection or data source 
will be used for collections of data not managed by a DBMS. For a more detailed 
explanation of basic data management than is possible in this chapter, see Ullman 
and Widom's A First Course in Database Systems [2]. 
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Use Case: A Simple Curated Gene Data Source 
Consider a simple collection of data about known and predicted human genes in 
a chromosomal region that has been identified as likely to be related to a genetic 
predisposition for a disease under investigation. The properties stored for each 
gene are as follows: 

�9 GenBank accession number (accnum) [3] 

�9 Aliases in other data sources (e.g., Swiss-Prot accession number) [4] 

�9 Description of the gene 

�9 Chromosomal location 

�9 Protein families database (Pfam) classification [5] 

�9 Coding sequence (CDS) 

�9 Peptide sequence 

�9 Gene Ontology (GO) annotation [6] 

�9 Has expression results? (Are there expression results for this gene?) 

�9 Has Single Nucleotide Polymorphisms (SNPs)? (Are there known SNPs for 
this gene?) 

�9 Date gene was entered 

�9 Date gene entry was last modified 

The complement of properties stored in a database, along with the relationships 
among them, is called the database's schema. Individual properties, GenBank 
a c c e s s i o n  number,  are attributes. Attributes can be single-valued, like 
p e p t i d e  s e q u e n c e ,  or multi-valued, like a l i a s e s .  Attributes can be atomic, 
like p e p t i d e  s e q u e n c e ,  which is a simple character string, or nested, like 
a l i a s e s ,  which themselves have structure (data source + identifier). 

Data accuracy is critically important in scientific data management. Single 
attributes or groups of attributes must satisfy certain rules or constraints for the 
data to be valid and useful. When entering data into the database, or populating it, 
care must be taken to ensure that these constraints are met. Examples of constraints 
in the simple gene data source are: 

�9 The chromosomal location of each gene must lie within the original region of 
interest. 

�9 The CDS and peptide sequences must contain only valid nucleotide and amino 
acid symbols, respectively. 
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�9 The CDS sequence must have no internal in-frame stop codons (which would 
terminate translation prematurely). 

�9 The peptide sequence must be a valid translation of the CDS sequence. 

�9 The Pfam classification must be a valid identifier in the Pfam data source. 

This simple gene data collection is subject to continual curation, in which 
new data is inserted, old data is updated, and erroneous data is deleted. A user 
might make changes to existing entries as more information becomes known, such 
as more accurate sequence or exon boundaries of a predicted gene, refined GO 
classification, SNPs discovered, or expression results obtained. A user might also 
make changes to the source's schema, such as adding new attributes like mouse 
orthologues, or links to LocusLink, RefSeq [7], or KEGG pathways [8]. New 
linkage studies may result in a widening or narrowing of the chromosomal region 
of interest, requiring a re-evaluation of which genes are valid members of the 
collection and the addition or deletion of genes. Finally, multiple curators may 
be working on the data collection simultaneously. Care must be taken that an 
individual curator's changes are completed before a second curator's changes are 
applied, lest inconsistencies result (e.g., if one curator changes the CDS sequence 
and the other changes the peptide sequence so they are no longer in the correct 
translation relationship to one another). The requirement for correctly handling 
multiple, simultaneous curators' activities is called multi-user concurrency. 

Databases are only useful, of course, if data of interest can be retrieved from 
them when needed. In a small database, a user might simply need to retrieve all 
the attributes at once in a report. More often, however, users wish to retrieve 
subsets of a database by specifying conditions, or search predicates, that the data 
retrieved should meet. Examples of queries from the curated gene data collection 
described previously are: "Retrieve the gene whose GenBank accession number 
is AA123456"; "retrieve only genes that have expression results"; "retrieve only 
genes that contain in their description the words 'serotonin receptor.'" Search 
predicates may be combined using logical AND and OR operators to produce 
more complex conditions; for example, in the query "Retrieve genes which were 
entered since 09/01/2002 and lie in a specified sub-region of the chromosomal 
region of interest," the conjunction of the two search predicates will be expressed 
by an operator AND. 

Use Case: Retrieving Genes and Associated 
Expression Results 
Along with the simple curated gene data collection, a user may wish to view expres- 
sion data on the genes that have been gathered through microarray experiments. 
For example, an expression data source might permit the retrieval of genes that 
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show equal to or greater than two-fold difference in expression intensities between 
ribonucleic acid (RNA) isolated from normal and diseased tissues. To retrieve all 
genes with known SNPs with at least two-fold differential expression between nor- 
mal and diseased tissue, search predicates would need to be applied to each of the 
two data sources. The result would be the genes that satisfy both of the conditions. 

There are many different but equivalent methods of retrieving the genes that 
satisfy both of these predicates, and an important task of a database system is to 
identify and execute the most efficient of these alternate methods. For example, 
the system could first find all genes with SNPs from among the curated genes, and 
then check the expression values for each of them one by one in the expression data 
source. Alternatively, the system could find all genes in the expression data source 
with two-fold expression in normal versus diseased tissue, then find all genes in 
the curated data source that have SNPs, and finally merge the two lists, retaining 
only the genes that appear in both lists. Typically, methods differ significantly in 
their speed due to such factors as the varying speeds of the two databases, the 
volume of data retrieved, the specificity of some predicates, the lack of specificity 
of others, and the order in which predicates are satisfied. They may also differ in 
their usage of computer system resources such as central processing unit (CPU) 
or disk. Depending on individual needs, the execution cost may be defined either 
as execution time or resource usage (see Chapter 13). The process of estimating 
costs of various alternative data retrieval strategies and identifying the lowest one 
among them is known as cost-based query optimization. 

Two Popular Data Management Strategies 
and Their Limitations 

Two approaches that have commonly been used to manage and distribute data in 
bioinformatics are spreadsheets and semi-structured text files. 

Spreadsheets 
Spreadsheets are easy to use and handy for individual researchers to browse their 
data quickly, perform simple arithmetic operations, and distribute them to col- 
laborators. The cell-based organization of a spreadsheet enables the structuring 
of data into separate items, by which the spreadsheet may then be sorted. The 
Microsoft Excel spreadsheet software [9] provides handy data entry features for 
replicating values in multiple cells, populating a sequence of rows with a sequence 
of integer identifiers, and entering values into a cell that have appeared in the same 
column previously. 

A disadvantage of spreadsheets, at least as they are typically used, is that very 
little data validation is performed when data is entered. It is certainly possible, 
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by programming in Microsoft Visual Basic or using advanced Excel features, to 
perform constraint checking such as verifying that data values have been taken 
from an approved list of values or controlled vocabulary, that numeric data fall 
in the correct range, or that a specific cell has not been left blank; but in prac- 
tice this is not often done. Furthermore, while advanced features exist to address 
this problem, in practice spreadsheets typically include a great deal of repeated 
or redundant data. For example, a spreadsheet of gene expression data might 
include the following information, repeated for each tissue sample against which 
the gene was tested: GenBank accession number, gene name, gene des- 

cription, LocusLink Locus ID, and UniGene Cluster ID. If an error 

should be found in any of these redundant fields, the change would have to be 
made in each row corresponding to the gene in question. If the change is not made 
in all relevant rows, an inconsistency arises in the data. In database circles, this 
inconsistency caused by unnecessary data duplication is called an update anomaly. 

Another problem with spreadsheets is they are fundamentally single-user data 
sources. Only one user may enter data into a spreadsheet at a time. If multiple users 
must contribute data to a data source housed in a spreadsheet, a single curator 
must be designated. If multiple copies of a spreadsheet have been distributed, and 
each has been edited and added to by a different curator, it will be a substantial task 
to harmonize disagreements among the versions when a single canonical version 
is desired. The spreadsheet itself offers no help in this matter. 

Finally, search methods over data stored in spreadsheets are limited to simple 
text searches over the entire spreadsheet; complex combinations of search condi- 
tions, such as "return serotonin receptors that have SNPs but do not have gene 
expression results" are not permitted. Additional limitations of text searches are 
presented in the next section. 

Semi-Structured Text Files 
Semi-structured text files, that is, text files containing a more or less regular se- 
ries of labels and associated values, have data management limitations similar to 
spreadsheets. A prominent example is the GenBank sequence annotation flat files 
[10]. It should be noted that the National Center for Biotechnology Information 
(NCBI) does not store its data in flat file format; rather, the GenBank flat file format 
is simply a report format based on the structured ASN.1 data representation [11]. 

An advantage of the semi-structured text format is that it permits more com- 
plex, hierarchical (tree-like) structures to be represented. A sequence has multiple 
references, each of which has multiple authors. Text files are also perhaps the most 
portable of formats--anyone with a text editor program can view and edit them 
(unless the file size exceeds the limit of the editor's capability). However, most 
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text editors provide no data validation features. Like spreadsheets, they are not 
oriented toward use by multiple concurrent users and provide little help in merg- 
ing or harmonizing multiple copies that have diverged from an original canonical 
version. Without writing an indexing program, searching a text file is very inef- 
ficient because the entire file must be read sequentially, looking for a match to 
the user's input. Further, it is impossible to specify which part of the flat file entry 
is to be matched. If a user wants to find mammalian sequences, there is no way 
to limit the search to the section organism of the file to speed the search. As 
with spreadsheets, full-text searches over text files do not support complex com- 
binations of search conditions. Full-text searches may also result in incorrect data 
retrieval. For example, consider a flat-file textual data source of human genes and 
their mouse orthologues, both of which have chromosomal locations. Suppose the 
user wants to "find all human genes related to mouse orthologues on mouse chro- 
mosome 10"; simple text-searching permits no way of specifying that the match 
to chromosome 10 should refer to the human gene and not the mouse gene. 
Finally, text editors provide no easy means of retrieving associated data from two 
related text data sources at once, for example, a GenBank entry and its associated 
Swiss-Prot entry. More sophisticated search capability over semi-structured, text- 
formatted data sources is provided by systems like LION Biosciences' Sequence 
Retrieval System (SRS) [12] (presented in Chapter 5); however, such read-only 
indexing systems do not provide tools for data validation during curation or solve 
the multi-user concurrency problem, and they have limited power to compensate 
for data irregularities in the underlying text files. 

Traditional Database Management 
This discussion of the limitations of spreadsheets and flat files points toward the 
advantages of traditional data management approaches. The most mature of these, 
relational technology, was conceived in 1970 in a seminal paper by E. E Codd [13 ]. 
In the succeeding 30 years, the technology has become very mature and robust, and 
a great deal of innovative thought has been put into making data retrieval faster 
and faster. For example, a great step forward was cost-based optimization, or plan- 
ning a query based on minimizing the expense to execute it, invented in 1979 by 
Patricia Selinger [ 14]. Similarly, because relational technology was originally devel- 
oped for business systems with a high volume of simultaneous inserts, updates and 
deletes, its ability to accommodate multiple concurrent users is highly advanced. 

The Relational Model 
A data model is the fundamental abstraction through which data is viewed. Al- 
though the terms are often confused, a data model is not the same as a schema, 
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which represents the structure of a particular set of data. The basic element of the 
relational data model is a table (or relation) of rows (or tuples) and columns (or 
attributes). A representation of gene expression data in tabular fashion means the 
relational data model is being used. A particular relational schema might contain 
a gene table whose columns are GenBank accession number, Swiss-Prot 

accession number, description, chromosomal location, Pfam 
classification, CDS sequence, peptide sequence, GO annota- 
tion, gene expression results, SNPs, date_entered, and date_ 
modified; and a gene expression table whose columns a r e  GenBank_ 
accession number, tissue_ID, and intensity_value. 

A number of basic operations are defined on relations, expressed by the rela- 
tional algebra operators [2]. 

�9 Projection (Jr) produces from a relation R a new relation (noted Jr R) that 
has only some of R's columns. In the example, the projection operator might 
return only the GenBank and Swiss-Prot accession numbers of the genes in 
the table. 

�9 Selection (or) produces from a relation R a new relation (noted cr R) with a 
subset of R's rows. For example, this could be the genes that have a Pfam 
protein kinase domain. 

�9 The union (U) of two relations R and S (noted R U S ) is the set of rows that are 
in R or S or both. ( R and S must have identical sets of attributes.) For example, 
if there were 24 separate tables of genes, one for each human chromosome, 
the union operator could be used to yield a single table containing all the genes 
in the genome. 

�9 The difference operation noted R-S of two relations R and S is the set of 
elements that are in R but not in S; for example, this could be the set of 
GenBank accession numbers that appear in the genes table but are not present 
in the gene expression table. 

�9 The join (~) of two relations R and S (noted R ~ S) is a relation consisting 
of all the columns of R and S, with rows from R and S paired if they agree 
on particular attribute(s) common to R and S, called the join attribute(s). 
For example, a user might join the genes table and the expression table on 
GenBank accession number, pairing genes with their expression results. 

The relational algebra operations are the building blocks that may be com- 
bined to form more complex expressions, or queries, that enable users to ask 
complex questions of scientific interest. For example, the following query involves 
projection, selection, union, and join: "Retrieve the GenBank accession numbers, 



peptide sequence, and tissue IDs" [projection] "for all genes on any chromosome" 
[union] "that have associated SNPs" [selection] "and show expression" [join] "in 
central nervous system tissue" [selection]. 

A key element of the relational approach is enabling users to describe the 
behavior they want to ensure or the results they want to retrieve, rather than 
requiring them to write a program that specifies, step by step, how to obtain the 
results or ensure the behavior. The Structured Query Language (SQL) [2], the 
language through which users pose questions to a relational database and specify 
constraints on relational data, is thus declarative rather than procedural. Through 
declarative statements, users can specify that a column value may not be null, that 
it must be unique in its table, that it must come from a predefined set or range of 
values, or that it must already be present in a corresponding column of another 
table. For example, when adding an expression result, the gene used must already 
be registered in the gene table. Through declarative queries, users can ask complex 
questions of the data involving many different columns in the database at once, 
and because relational tables may be indexed on multiple columns, such searches 
are fast. Advanced search capabilities permit defining subsets of the database and 
then counting or averaging numeric values over the subset. An example would 
be listing all tissues sampled and the average expression value in each over a set 
of housekeeping genes. Performing such computations over subsets of tables is 
called aggregation, and functions like count, average, minimum, and maximum 
are aggregate functions. 

Finally, because it is easy to define multiple related tables in a relational 
database, a user may define separate tables for genes and their aliases, permit- 
ting fast searches over multiple aliases and eliminating the need for users to know 
what type of alias they are searching with, that is, where it comes from (Swiss- 
Prot, GenBank, etc.). There are two main disadvantages of relational databases 
when compared to flat file data sources and spreadsheets: Specialized software 
is required to query the data, and free text searches of the entire entry are not 
supported in a traditional relational database. 

A criticism sometimes made of the relational data model is that it is not 
natural to model complex, hierarchically structured biological objects as flat, 
relational tables. For example, an annotated sequence, as represented in Gen- 
Bank, is a rich structure. The systems in the BioKleisli family (see Chapter 6) 
address this issue by defining their basic operations on nested relations, that 
is, relations whose attributes can themselves be relations. Another approach to 
management of hierarchically structured data is to represent it in eXtensible 
Markup Language (XML) [15], a structured text data exchange format based on 
data values combined with tags that indicate the data's structure. Special-purpose 
XML query languages are in development that will enable users to pose complex 



3 A Practitioner's Guide to Data Management 
4 ......... , ~ , ~ , ~ , ~ o ~ , , ~  .................. ~ . ~ , ~ = E  ==~ ............................ ~,,,~=~= ~ , , ~  .......................... =,,~===x====,~=,, ......................... ~ ...................... ,== ............... = ==== ............ .===~=~====~.~==~=.,~=,=~ .............. ~ , ~ = . ~ ,  .............. = ~ . ~ , , = , ~  .......... ~...~....=~=~.~o~,, 

queries against XML databases and specify the desired structure of the resulting 
data [16]. 

Use Case: Transforming Database Structure 
Often, transformation of database structures is necessary to enable effective query- 
ing and management of biological data. Many venerable data sources no longer 
represent biological objects optimally for the kinds of queries investigators typi- 
cally want to pose. For example, it has often been noted that GenBank is sequence- 
centric, not gene-centric, so queries concerning the structure of individual genes 
are not easy to express. In contrast, Swiss-Prot is sequence-centric, not domain- 
centric, so it is rather awkward to ask for proteins with carbohydrate features in a 
certain domain because all these features are represented in terms of the sequence 
as a whole. 

To illustrate one method of handling data transformations, consider a very 
simple gene table with attributes GenBank accession number, SwissProt 

accession number, and sequence. It might be advantageous to enable users 
to retrieve sequences by accession number without knowing where the accession 
number originated (GenBank or Swiss-Prot). Creating a separate table for aliases 
is one solution, particularly if each gene has many different accession numbers, 
including multiple accession numbers from the same original data source. Another 
way to permit this search is to transform the database into the following schema: 
a c c e s s i o n  number  and s e q u e n c e .  This transformation can be accomplished 
by retrieving all the GenBank accession numbers and their associated se- 
quences, then retrieving all the swissProt accession numbers and their 
associated sequences, and finally doing a union of those two sets. The formula 
or expression that defines this transformed relation is called a view. This expression 
may be used to create a new table, called a materialized view, which exists sepa- 
rately from the original table, so that changes to the original are not applied to the 
new table. If the expression is not used to create a new table, but only to retrieve 
data from the original table and transform it on the fly, it is a non-materialized 
view, or simply a view. 

Recall the critique that it is not natural to model complex, hierarchically struc- 
tured biological objects as flat, relational tables. A user might choose relational 
database technology for storing and managing data due to its efficiency, maturity, 
and robustness but still wish to present a hierarchical view of the data to the user, 
one that more closely matches biological concepts. This (non-materialized) view 
may be accomplished by means of a conceptual schema layered on top of the 
relational database. The biological object layers of Transparent Access to Multi- 
ple Bioinformatics Information Sources (TAMBIS) (see Chapter 7) and the Acero 
Genome Knowledge Platform [17] are efforts in this direction. 



3.3 DIMENSIONS DESCRIBING THE SPACE 
OF INTEGRATION SOLUTIONS 

There is nearly universal agreement in the bioinformatics and genomics com- 
munities that scientific investigation requires an integrated view of all relevant 
data. A general discussion of the scope of biological data integration, as well as 
the obstacles that currently exist for integration efforts, is presented in Chap- 
ter 1 of this book. The typical bioinformatics practitioner encounters data in a 
wide variety of formats, as Chapter 2 presents, including relational databases, 
semi-structured flat files, and XML documents. In addition, the practicing bioin- 
formatician must integrate the results of analytical applications performing such 
tasks as sequence comparison, domain identification, motif search, and phyloge- 
netic classification. Finally, Internet sites are also critical due to the traditional 
importance of publicly funded, public domain data at academic and government 
Web sites, whether they are central resources or boutique data collections target- 
ing specific research interests. These Internet resources often provide specialized 
search functionality as well as data, such as the Basic Local Alignment Search 
Tool (BLAST) at NCBI [18] and the Simple Modular Architecture Research Tool 
(SMART) at the European Molecular Biology Laboratory (EMBL) [19]. A bioin- 
formatics integration strategy must make sure this specialized search capability is 
retained. 

3.3.1 A Motivating Use Case for Integration 
To motivate the need for an integration solution, consider the following use case: 
"Retrieve sequences for all human expressed sequence tags (ESTs) that by BLAST 
are >60% identical over >50 amino acids to mouse channel genes expressed in 
central nervous system (CNS) tissue." For those less familiar with biological terms, 
a channel gene is a gene coding for a protein that is resident in the membrane of 
a cell and that controls the passage of ions (potassium, sodium, calcium) into and 
out of the cell. The channels open and close in response to appropriate signals and 
establish ion levels within the cell. This is particularly important for neural network 
cells. The data sources used in this query are: the Mouse Genome Database (MGD) 
at the Jackson Laboratory in Bar Harbor, Maine [20]; the Swiss-Prot protein 
sequence data source at the Swiss Institute for Bioinformatics, and the BLAST 
search tool and the GenBank nucleotide sequence data collection at NCBI. The 
data necessary to satisfy this query are split, or distributed, across multiple data 
sources at multiple sites. One way to integrate these data sources is to enable the 
user to access them as if they were all components of a single, large database with 
a single schema. This large global schema is an integrated view of all the local 
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schemas of the individual data sources. Producing such a global schema is the task 
of schema integration. 

This example illustrates six dimensions for categorizing integration solutions: 

�9 Is data accessed via browsing or querying? 

�9 Is access provided via declarative or procedural code? 

�9 Is the access code generic (used for all similar data sources) or hard-coded for 
the particular source? 

�9 Is the focus on overcoming semantic heterogeneity (heterogeneity of meaning) 
or syntactic heterogeneity (heterogeneity of format)? 

�9 Is integration accomplished via a data warehouse or a federated approach? 

�9 Is data represented in a relational or a non-relational data model? 

As will become evident, some approaches will be better suited to addressing this 
particular use case than others; this is not intended to prejudice but to clarify 
the differences among the approaches. The rest of Section 3.3 discusses various 
alternative approaches to addressing this motivating use case. 

3.3.2 Browsing vs. Querying 
The relationship between browsing and querying is similar to the relationship in li- 
brary research between browsing the stacks and conducting an online search. Both 
are valid approaches with distinct advantages. Browsing, like freely wandering in 
the stacks, permits relatively undirected exploration. It involves a great deal of leg 
work, but it is the method of choice when investigators want to explore the domain 
of interest to help sharpen their focus. It is also well suited to retrieval of a single 
Web page by its identifier or a book by its call number. On the other hand, query- 
ing, like online searching, permits the formulation of a complex search request as a 
single statement, and its results are returned as a single collated set. Both browsing 
and querying allow the user to select a set of documents from a large collection 
and retrieve them. However, browsing stops at retrieval, requiring manual navi- 
gation through the resulting documents and related material via static hyperlinks. 
Querying goes further than retrieval: It accesses the content [21] of the resulting 
documents, extracts information and manipulates it, for example, dropping some 
items and performing computations on others. Querying thus makes very efficient 
use of human time and is the method of choice when an investigator's interests 
are already focused, especially if aggregations over subsets of data are involved. 

While the motivating use case may be successfully addressed using the brows- 
ing approach, it is tedious, error-prone, and very cumbersome, involving an 
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average of 70 BLAST result sets consisting of up to 500 EST hits each. In the 
browsing approach, the user searches for channel sequences expressed in CNS 
tissues using the MGD query form. The result is 14 genes from 17 assays. The 
user then visits each gene's MGD page. Assume that the user is only interested in 
Swiss-Prot sequences and that each gene has an average of five associated Swiss- 
Prot sequence entries. The user has to visit each sequence's Swiss-Prot page, from 
which a BLAST search against gbest (the EST portion of GenBank) is launched. 
Each BLAST result must be inspected to eliminate non-human sequence hits and 
alignments that do not meet the inclusion criteria (>60% identity over >50 amino 
acids) and to eliminate duplicate ESTs hit by multiple Swiss-Prot sequences. Finally, 
the full EST sequences for all the hits that survive must be retrieved from GenBank. 
If the browsing approach was used to satisfy this query, these steps would then be 
repeated for each of the 14 genes returned by the initial query (Figure 3.1). 

MGD query 

MGD gene MGD gene MGD gene MGD gene 

S!seq ... 

~ 1 7 6 1 7 6  

Result 

3.1 

FIGURE 

Schematic diagram of the browsing approach to the motivating use case. 
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Querying Approach 
Show me all human EST s e q u e n c e s  that are >60% 

identical over 50 AA to mouse  channel g e n e s  
expres sed  in CNS" 

3.2 

FIGURE 

The querying approach to the motivating use case. 

In a querying approach to this problem, a short SQL query is submitted to 
the query processor. The query processor visits MGD to identify channel genes 
expressed in CNS, and the Swiss-Prot Web site to retrieve their sequences. For each 
of these sequences, it launches a BLAST search against gbest, gathers the results, 
applies the stringency inclusion criteria, and finally retrieves the full-length EST 
sequences from GenBank (Figure 3.2). 

3.3.3 Syntactic vs. Semantic Integration 
As stated previously, syntactic integration addresses heterogeneity of form. Gen- 
Bank is a structured file, MGD is a Sybase (relational) database, and BLAST is 
an analytical application. These differences in form are overcome in the browsing 
strategy by providing a Web-based front end to the sources and in the query- 
ing strategy by providing SQL access to all the sources. Contrariwise, semantic 
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integration addresses heterogeneity of meaning. In GenBank, a gene is an anno- 
tation on a sequence, while in MGD a gene is a locus conferring phenotype (e.g., 
black hair, blindness). Neither of the integration approaches in this example specif- 
ically focuses on resolving this heterogeneity of meaning. They rely instead on the 
user's knowledge of the underlying data sources to combine data from the sources 
in scientifically meaningful ways. 

Warehouse vs. Federation 

In a warehousing approach to integration, data is migrated from multiple sources 
into a single DBMS, typically a relational DBMS. As it is copied, the data may 
be cleansed or filtered, or its structure may be transformed to match the desired 
queries more closely. Because it is a copy of other data sources, a warehouse must 
be refreshed at specified timesmhourly, daily, weekly, monthly, or quarterly. A 
data warehouse may contain multiple data marts, subset warehouses designed to 
support a specific activity or inquiry. 

While a warehouse replicates data, a federated approach leaves data in its 
native format and accesses it by means of the native access methods. In the pre- 
vious example, the querying approach is a federated approachmit accesses MGD 
as a Sybase database, Swiss-Prot and GenBank as Web sites, and BLAST via run- 
time searches, and it integrates their results using complex software known as 
middleware. An alternative demonstration of the querying approach could have 
imported GenBank, Swiss-Prot, MGD, and the results of BLAST searches into 
Sybase, Oracle, or IBM DB2 database systems and executed the retrievals and 
filtering there. This would have been an example of the warehousing approach. 

Declarative vs. Procedural Access 

As discussed previously, declarative access means stating what the user wants, 
while procedural access specifies how to get it. The typical distinction opposes the 
use of a query language (e.g., SQL) and writing access methods or sub-routines 
in Perl, Java, or other programming languages to access data. In the motivating 
use case in Section 3.3.1, the querying approach uses the SQL query language. 
Alternatively, Perl [22] sub-routines or object methods that extract data from 
MGD, Swiss-Prot, and GenBank and run the necessary BLAST searches could 
have performed the task. 

Generic vs. Hard-Coded 

The federated approach in the previous example was generic; it assumed the 
use of a general-purpose query execution engine and general purpose wrappers 
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(software modules tailored to a particular family of data sources) for data ac- 
cess. An example of a hard-coded approach to the problem would be writing a 
special purpose Perl script to retrieve just the information needed to answer this 
particular question. A generic system enables users to ask numerous queries sup- 
porting a variety of scientific tasks, while a hard-coded approach typically answers 
a single query and supports users in a single task. Generic approaches generally 
involve higher up-front development costs, but they can pay for themselves many 
times over in flexibility and ease of maintenance because they obviate the need for 
extensive programming every time a new research question arises. 

Relational vs. Non-Relational Data Model 
Recall that a data model is not a specific database schema, but rather something 
more abstract: the way in which data are conceptualized. For example, in the re- 
lational data model, the data are conceptualized as a set of tables with rows and 
columns. Oracle, Sybase, DB2, and MySQL are all DBMSs built on the relational 
model. In data management systems adhering to a non-relational data model, data 
may be conceptualized in many different ways, including hierarchical (tree-like) 
structures, ASCII text files, or Java or Common Object Request Broker Architec- 
ture (CORBA) [23] objects. In the motivating example, MGD is relational, and 
the other sources are non-relational. 

3.4 USE CASES OF INTEGRATION SOLUTIONS 

The motivating use case in Section 3.3.1 permitted a brief outline of the six dimen- 
sions for categorizing integration solutions. To further elucidate these dimensions 
and demonstrate their use, this section describes each dimension in greater detail, 
presents a prototypical featured solution, and categorizes the featured integration 
solution on all six dimensions. 

3.4.1 Browsing-Driven Solutions 

As in the previous example, in a browsing approach users are provided with inter- 
active access to data, allowing them to step sequentially through the exploratory 
process. A typical browsing session begins with a query form that supports a set 
of pre-defined, commonly posed queries. After the user has specified the parame- 
ters of interest and the query is executed, a summary screen is typically returned. 
From here the user may drill down, one by one, into the individual objects meet- 
ing the search criteria and from there view related objects by following embedded 
links, such as hypertext markup language (HTML) or XML hyperlinks. The data 
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source(s) underlying a browsing application may be warehoused or federated, and 
relational or non-relational. Browsing applications are ubiquitous on the Internet; 
examples are Swiss-Prot and the other data collections on the Expert Protein 
Analysis System (ExPASy) server at the Swiss Institute of Bioinformatics [24], the 
FlyBase Web site for Drosophila genetics [25, 26], and the featured example, the 
Entrez Web site at NCBI [10]. 

Browsing Featured Example: NCBI Entrez 
As an example of the browsing approach, consider the following query: "Find in 
PubMed articles published in 2002 that are about human metalloprotease genes 
and retrieve their associated GenBank accession numbers and sequences." The se- 
quence of steps in answering this query is shown in Figures 3.3 through 3.7. First 
the user enters the Entrez Boolean search term "metalloprotease AND human 
AND 2002 [pdat]" in the PubMed online query form [7]. The result is a summary 
of qualifying hits; there were 1054 in December 2002 (Figure 3.3). From here, 
the user can visit individual PubMed entries (Figure 3.4), read their abstracts, 
check for a GenBank sequence identifier in the secondary source ID attribute 
(Figure 3.5), and visit the associated GenBank entry to retrieve the sequence. 

3.3 

FIGURE 

PubMed articles published in 2002 on human metalloprotease genes. 
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3.4 

FIGURE 

One of the qualifying PubMed abstracts. 

Alternatively, the user can take advantage of the LinkOut option on the PubMed 
entry page (Figures 3.4 and 3.6), which enables access to the sequence informa- 
tion provided by LocusLink (Figure 3.7). Notice that there are many more nav- 
igation paths to follow via hyperlinks than are described here; a strength of the 
browsing approach is that it supports many different navigation paths through 
the data. 

The categorization of Entrez based on the six dimensions is given in Table 3.1 
on page 56. 

3.4.2 Data Warehousing Solutions 
In the data warehousing approach, data is integrated by means of replication and 
storage in a central repository. Often data is cleaned and/or transformed during 
the loading process. While a variety of data models are used for data warehouses, 
including XML and ASN.1, the relational data model is the most popular choice 
(e.g., Oracle, Sybase, DB2, MySQL). Examples of the integration solutions follow- 
ing the data warehousing approach include Gene Logic's GeneExpress Database 
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3.5 

FIGURE 

Checking for GenBank references in the PubMed entry. 

(presented in Chapter 10) [27], the Genome Information Management System 
of the University of Manchester [28], the data source underlying the GeneCards 
Web site at the Weizmann Institute in Israel [29, 30], and AllGenes [31], which 
will serve as the featured example. 

Warehousing Featured Example: AIIGenes 
A research project of the Computational Biology and Informatics Laboratory at 
the University of Pennsylvania, AllGenes is designed to provide access to a database 
integrating every known and predicted human and mouse gene, using only publicly 
available data. Predicted human and mouse genes are drawn from transcripts pre- 
dicted by clustering and assembling EST and messenger RNA (mRNA) sequences. 
The focus is on integrating the various types of data (e.g., EST sequences, genomic 
sequence, expression data, functional annotation). Integration is performed in a 
structured manner using a relational database and controlled vocabularies and 
ontologies [32]. In addition to clustering and assembly, significant cleansing and 
transformation are done before data is loaded onto AllGenes, making data ware- 
housing an excellent choice. 
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3.6 

FIGURE 

The LinkOuts page enables access to LocusLink. 

A sample query for AllGenes is the following: "Show me the D N A  repair 

genes that are known to be expressed in central nervous system tissue." The query 
is specified and run using a flexible query-builder interface (Figure 3.8), yielding 
a summary of qualifying assemblies (Figure 3.9). From the query result page the 
user can visit a summary page for each qualifying assembly, which includes such 
valuable information as predicted GO functions; hyperlinks to GeneCards, the 
Mouse Genome Database (MGD), GenBank, ProDom, and so on; Radiation Hy- 
brid (RH) Map locations; the 10 best hits against the GenBank non-redundant 
protein database (nr); and the 10 best protein domain/motif hits. 

The categorization of AllGenes based on the six dimensions is given in 
Table 3.2 on page 58. 

3.4.3 Federated Database Systems Approach 
Recall that in a federated approach, data sources are not migrated from their na- 
tive source formats, nor are they replicated to a central data warehouse. The data 
sources remain autonomous, data is integrated on the fly to support specific queries 
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3.7 

FIGURE 

Sequences may be obtained from LocusLink entries corresponding to PubMed 
articles. 

or applications, and access is typically through a declarative query language. Ex- 
amples of federated systems and their data models include complex-relational sys- 
tems, such as BioKleisli/K2 (Chapter 8) and its cousin GeneticXchange's K1 (see 
Chapter 6), object-relational systems (OPM/TINet) [33], and IBM's relational sys- 
tem DiscoveryLink, which is detailed in Chapter 10 and will serve as the featured 
example [34]. 

Federated Featured Example: DiscoveryLink 
The motivating use case of Section 3.3.1 is a good fit for a federated approach like 
DiscoveryLink's. DiscoveryLink provides transparency: The federation of diverse 
types of data from heterogeneous sources appears to the user or the application as 
a single large database, in this case a relational database. The SQL query language 
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Browsing 

Interactive Web browser access to data 

Semantic 

No semantic integration 

Warehouse 

Provides access to data sources at NCBI 

Declarative Access 

No declarative access 

Generic 

Not generic 

Relational Data Model 

Relational data model not used 

Querying 

No querying capability 

Syntactic 

Provides access to nucleotide and protein 

sequence, annotation, MEDLINE abstracts, etc. 

Federation 

No federation 

Procedural Access 

Access via Entrez Programming Utilities 

(E-utilities) 

Hard-Coded 

Hard-coded for NCBI sources only 

Links are hard-coded indices 

Non-Relational Data Model 

Data stored in the ASN.1 complex-relational 

data model 

3.1 
�9 - .  ~ , ,  \ . . . .  . :~  

TABLE 

Entrez categorization with respect to the six dimensions of integration. 

is supported over all the federated sources, even if the underlying sources' native 
search capabilities are less full-featured than SQL; a single federated query, as in 
the earlier motivating example, typically combines data from multiple sources. 
Similarly, specialized non-SQL search capabilities of the underlying sources are 
also available as DiscoveryLink functions. 

The architecture of DiscoveryLink appears in Chapter 10 (Figure 10.1). At 
the far right are the data sources. To these sources, DiscoveryLink looks like 
an appl icat ion~they are not changed or modified in any way. DiscoveryLink 
talks to the sources using wrappers, which use the data source's own client-server 
mechanism to interact with the sources in their native dialect. DiscoveryLink 
has a local catalog in which it stores information (meta-data) about the data 
accessible (both local data, if any, and data at the back end data sources). Ap- 
plications of DiscoveryLink manipulate data using any supported SQL Appli- 
cation Programming Interface (API); for example, Open Database Connectivity 
(ODBC) or Java DataBase Connectivity (JDBC) are supported, as well as em- 
bedded SQL. Thus a DiscoveryLink application looks like any normal database 
application. 



3.4 Use Cases of Integration Solutions 57 

3.8 

FIGURE 

The AllGenes query builder. 

3.9 

FIGURE 

Results of the AllGenes query. 
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Browsing 

Interactive Web browser access to data 

Semantic 

Ontologies for semantic integration 

Warehouse 

Data stored in relational warehouse 

Declarative Access 

Under the covers; users use 

parameterized query builder 

Generic 

Information not available 

Relational Data Model 

Data stored in Oracle DBMS 

Querying 

Limited querying capability via parameterized 

query builder 

Syntactic 

Data warehousing for syntactic integration 

Federation 

Not a federation 

Procedural Access 

No procedural access 

Hard-Coded 

Information not available 

Non-Relational Data Model 

Not used 

3.2  

TABLE 

AllGenes categorization with respect to the six dimensions of integration. 

The categorization of DiscoveryLink based on the six dimensions is given in 

Table 3.3. 

3.4.4 Semantic Data Integration 
Recall that semantic data integration focuses on resolving heterogeneity of mean- 
ing, while syntactic data integration focuses on heterogeneity of form. In a volume 
on management of heterogeneous database systems, Kashyap and Sheth write: 

In any approach to interoperability of database systems [database integration], the 

fundamental question is that of identifying objects in different databases that are 

semantically related and then resolving the schematic [schema-related] differences 

among semantically related objects. [35] 

This is the fundamental problem of semantic data integration. The same protein se- 

quence is known by different names or accession numbers (synonyms) in GenBank 

and Swiss-Prot. The same mouse gene may be represented as a genetic map locus 
in MGD, the aggregation of multiple individual exon entries in GenBank, and a set 

of EST sequences in UniGene; in addition, its protein product may be an entry in 
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3.3 

TABLE 

Browsing 

No browsing capability 

Semantic 

No semantic integration 

Warehouse 

Not available, though warehouses may be 

members of a DiscoveryLink federation 

Declarative Access 

SQL query language 

Generic 

Query processor, most wrappers 

Relational Data Model 

Built on top of DB2 

Querying 

Full ad hoc SQL query language 

Syntactic 

�9 Maps heterogeneous sources into 

relational model 

�9 Maps SQL into native query languages 

of sources 

Federation 

Integrates heterogeneous sources 

through wrappers and middleware 

Procedural Access 

No procedural access 

Hard-Coded 

Some access wrappers (e.g., BLAST) 

Non-Relational Data Model 

Not used 

DiscoveryLink categorization with respect to the six dimensions of integration. 

Swiss-Prot and its human orthologues may be represented as a disease-associated 
locus in Online Mendelian Inheritance in Man (OMIM) [36]. Semantic integration 
also deals with how different data sources are to be linked together. For exam- 
ple, according to documentation at the Jackson Lab Web site [37], MGD links to 
Swiss-Prot through its marker concept, to RatMap [38] through orthologues, to 
PubMed through references, and to GenBank through either markers (for genes) or 
molecular probes and segments (for anonymous DNA segments). Finally, a schema 
element with the same names in two different data sources can have different se- 
mantics and therefore different data values. For example, retrieving orthologues 
to the human BRCA1 gene in model organisms from several commonly used Web 
sites yields varying results: GeneCards returns the BRCA1 gene in mouse and C. 
elegans; MGD returns the mouse, rat, and dog genes; the Genome DataBase (GDB) 
[39, 40] returns the mouse and drosophila genes; and LocusLink returns only the 
mouse gene. 

Approaches to semantic integration in the database community generally cen- 
ter on schema integration: understanding, classifying, and representing schema 



3 A Practitioner's Guide to Data Management 60 

differences between two disparate databases. For example, in capturing the se- 
mantics of the relationships between objects in multiple databases, Kashyap and 
Sheth describe work on understanding the context of the comparison, the abstrac- 
tion relating the domains of the two objects, and the uncertainty in the relationship 
[351. 

Bioinformatics efforts at semantic integration have largely followed the ap- 
proach of the artificial intelligence community. Examples of such semantic in- 
tegration efforts are the Encyclopedia of Escherichia coli genes and metabolism 
(EcoCyc) [41], GO, and TAMBIS, the featured example and the subject of 
Chapter 7 of this book. 

Semantic Integration Featured Example: TAMBIS 
The TAMBIS system is the result of a research collaboration between the depart- 
ments of computer science and biological sciences at the University of Manchester 
in England. Its chief components are an ontology of biological and bioinformatics 
terms managed by a terminology server and a wrapper service that, as in Dis- 
coveryLink, handles access to external data sources. An ontology is a rigorous 
formal specification of the conceptualization of a domain. The TAMBIS ontology 
(TaO) [42] describes the biologist's knowledge in a manner independent of indi- 
vidual data sources, links concepts to their real equivalents in the data sources, 
mediates between (near) equivalent concepts in the sources, and guides the user to 
form appropriate biological queries. The TaO contains approximately 1800 as- 
serted biological concepts and their relationships and is capable of inferring many 
more. Coverage currently includes proteins and nucleic acids, protein structure 
and structural classification, biological processes and functions, and taxonomic 
classification. 

The categorization of TAMBIS based on the six dimensions is given in 
Table 3.4. 

3.5 STRENGTHS AND WEAKNESSES OF THE 
VARIOUS APPROACHES TO INTEGRATION 

This chapter has described multiple approaches to database integration in the 
bioinformatics domain and provided examples of each. Each of these approaches 
has strengths and weaknesses and is best suited to a particular set of integration 
needs. 
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Browsing 

Interactive browser 

Semantic 

According to TAMBIS' authors, its 

"big win" lies in the ontology 

Warehouse 

Not used 

Declarative Access 

Uses the CPL query language, but users see 

only the parameterized query builder 

Generic 

Information not available 

Relational Data Model 

Relational data model not used 

Querying 

Limited querying capability via parameterized 

query builder 

Syntactic 

Integrates via its wrapper service 

Federation 

Uses BioKleisli for federated integration 

Procedural Access 

No procedural access 

Hard-Coded 

Information not available 

Non-Relational Data Model 

Object/complex-relational data model 

3.4 

TABLE 

3.5.1 

TAMBIS categorization with respect to the six dimensions of integration. 

Browsing and Querying" Strengths 
and Weaknesses 

The strengths of a browsing approach are many. As noted previously, its interactive 
nature makes it especially well suited to exploring the data landscape when an 
investigator has not yet formulated a specific question. It is also well suited to 
retrieval of information about single objects and for optionally drilling down to 
greater levels of detail or for following hyperlinks to related objects. The ubiquity 
of the Internet makes Web browsers familiar to even the most inexperienced user. 

The weaknesses of a browsing approach are the flip side of its strengths. 
Because it is fundamentally based on visiting single pages containing data on a 
single object, it is not well suited to handling large data sets or to performing a 
large, multi-step workflow including significant processing of interim results. Its 
flexibility is also limited, as the user is confined to the query forms and navigation 
paths the application provides. 

The strengths of a querying approach are the natural opposite of those of 
the browsing approach. Because it is based on specifying attributes of result sets 
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3.5.2 

via a query language, often with quite complex search conditions, the querying 
approach is well suited to multi-step workflows resulting in large result sets. This 
approach is also flexible, allowing the user to specify precisely inclusion and ex- 
clusion criteria and noting which attributes to include in the final result set. Con- 
trariwise, the querying approach is not as well suited to the exploration or manual 
inspection of interim results, and the need to specify desired results using query 
language syntax requires more computational sophistication than many potential 
users possess. 

Warehousing and Federation" Strengths 
and Weaknesses 

A major strength of a data warehousing approach is that it permits cleansing and 
filtering of data because an independent copy of the data is being maintained. 
If the original data source is not structured optimally to support the most com- 
monly desired queries, a warehousing approach may transform the data to a more 
amenable structure. Copying remote data to a local warehouse can yield excellent 
query performance on the warehouse, all other things being equal. Warehousing 
exerts a load on the remote sources only at data refresh times, and changes in the 
remote sources do not directly affect the warehouse's availability. 

The primary weakness of the data warehousing approach is the heavy main- 
tenance burden incurred by maintaining a cleansed, filtered, transformed copy of 
remote data sources. The warehouse must be refreshed frequently to ensure users' 
access to up-to-date data; the warehousing approach is probably not the method 
of choice for integrating large data sources that change on a daily basis. Adding a 
data source to a warehouse requires significant development, loading, and mainte- 
nance overhead; therefore this approach is unlikely to scale well beyond a handful 
of data sources. Warehousing data may lose the specialized search capability of 
the native data sources; an example would be specialized text searching over doc- 
uments or sub-structure searching over chemical compound data collections. 

A major strength of the federated approach is that the user always enjoys 
access to the most up-to-date data possible. While connectivity to remote sources 
requires some maintenance, the burden of adding and maintaining a new data 
source is considerably less than in the warehousing case. The federated approach 
scales well, even to very large numbers of data sources, and it readily permits 
new sources to be added to the system on a prototype or trial basis to evaluate 
their potential utility to users. In a fast-paced, ever-changing field like bioinfor- 
matics, this nimbleness is invaluable. The federated approach meshes well with a 
landscape of many individual, autonomous data sources, which the bioinformat- 
ics community currently boasts. Finally, a federated system can provide access to 
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3.5.3 

3.5.4 

data that cannot be easily copied into a warehouse, such as data only available 
via a Web site. 

Any data cleansing must be done on the fly, for a federation accesses remote 
data sources in their native form. The members of the federation must be able 
to handle the increased load put on them by federated queries, and if network 
bandwidth is insufficient, performance will suffer. 

Procedural Code and Declarative Query 
Language" Strengths and Weaknesses 

Procedural code may be tuned very precisely for a specific task. There are virtually 
no limitations on its expressive power; however, this very strength can make it 
difficult to optimize. Ad hoc inquiries can be difficult to support, and extending 
the system to handle additional sources or additional queries can be difficult. 

Declarative languages are flexible and permit virtually unlimited ad hoc query- 
ing. Queries expressed in a declarative language are relatively easy to program and 
maintain due to their small size and economy of expression. Sometimes, however, 
their simplicity is misleading; for example, it is easy to write a syntactically correct 
SQL query, but the results returned may not be what was intended because the 
query was written using the wrong constructs for the desired meaning. Finally, 
some programming tasks are much more easily written in a procedural language 
than a declarative one; the classic example is recursive processing over tree-like 
structures. 

Generic and Hard-Coded Approaches" 
Strengths and Weaknesses 

Generic coding is generally acknowledged to be desirable, where practicable, due 
to its extensibility and maintainability and because it facilitates code re-use. It 
does, however, yield a greater up-front cost than programming hard-coded for a 
specific task, and sometimes schedules do not permit this up-front expenditure. 
If the instances being generalized are not sufficiently similar, the complexity of 
generic code can be prohibitive. 

Hard-coding permits an application to be finely tuned to optimize for a specific 
critical case, potentially yielding very fast response times; this approach may be 
the preferred strategy when only a limited set of queries involving large datasets 
is required. In the absence of an already existing generic system, it is generally 
quicker to prototype rapidly by hard coding. On the other hand, code with many 
system-specific assumptions or references can be difficult to maintain and extend. 
Adding a new data source or even a new query often means starting from scratch. 
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3.5.5 

3.5.6 

Relational and Non-Relational Data Models: 
Strengths and Weaknesses 

The relational data model is based on a well-understood, theoretically rock-solid 
foundation. Relational technology has been maturing for the past 30 years and 
can provide truly industrial-strength robustness and constant availability. Rela- 
tional databases prevent anomalies while multiple users are reading and writing 
concurrently, thus safeguarding data integrity. Optimization of queries over re- 
lational databases has been developed and honed for decades. The SQL query 
language is powerful and widely used, so SQL programmers are relatively easy 
to find. However, the relational model is based on tables of rows and columns, 
and several individual tables are typically required to represent a single complex 
biological object. 

Hierarchical non-relational data models seem to be a more natural fit for 
complex scientific objects. However, this technology is still quite immature, and 
standard database desiderata such as cost-based query optimization, data integrity, 
and multi-user concurrency have been hard to attain because of the increased 
complexity of the non-relational systems. 

Conclusion" A Hybrid Approach to Integration 
Is Ideal 

Considering the variety of integration needs in a typical organization, a hybrid 
approach to database integration is generally the best strategy. For data that it 
is critical to clean, transform, or hand curate, and for which only the best query 
performance is adequate, data warehousing is probably the best approach. If the 
warehouse is derived from data outside the organization, it is best if the original 
data source changes infrequently, so the maintenance burden in merging updates is 
not too onerous. Otherwise, the federated model is an excellent choice because of 
its relatively low maintenance cost and its extensibility and scalability. Federations 
allow easy prototyping and swapping of new data sources for old in evaluation 
mode, and they permit integration of external data that is not accessible for dupli- 
cating internally, such as data only available via Web sites. They also permit the 
integration of special purpose search algorithms such as sequence comparison, sec- 
ondary structure prediction, text mining, clustering, chemical structure searching, 
and so forth. Wherever possible, strategies should be generic, except for one-time, 
one-use programs or where hard-coding is needed to fine tune a limited set of 
operations over a limited set of data. 

Both browsing and querying interfaces are important for different levels of 
users and different needs. For access to data in batch mode, the most common 
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queries can be pre-written and parameterized and offered to users via a Web form- 
based interface. Both semantic and syntactic data integration are needed, although 
semantic integration is just beginning to be explored and understood. 

Due to the maturity of the technology and its industrial strength, the relational 
data model is currently the method of choice for large integration efforts, both 
warehousing and federation. A middle software layer may be provided to expose 
biological objects to users, as mentioned previously. But based on the current 
state of the industry, the underlying data curation, storage, querying planning, 
and optimization are arguably best done in relational databases. 

3.6 TOUGH PROBLEMS IN BIOINFORMATICS 
INTEGRATION 

In spite of the variety of techniques and approaches to data integration in bioinfor- 
matics, many tough integration problems remain. These include query processing 
in a federated system when some members of the federation are inaccessible; uni- 
versally accepted standards of representation for central biological concepts such 
as gene, protein, transcript, sequence, polymorphism, and pathway; and represent- 
ing and querying protein and DNA interaction networks. This section discusses 
two additional examples of tough problems in bioinformatics integration: seman- 
tic query planning and schema management. 

3.6.1 Semantic Query Planning Over Web 
Data Sources 

While the TAMBIS and GO projects have made an excellent start in tackling 
the semantic integration problem, more remains to be done. TAMBIS and GO 
have focused on building ontologies and controlled vocabularies for biological 
concepts. Another fruitful area of investigation in semantic integration is using 
knowledge of the semantics of data sources to generate a variety of alternative 
methods of answering a question of scientific interest, thus freeing the user from 
the need to understand every data source in detail [43]. 

Recall that in accessing multiple data sources there are usually multiple ways 
of executing a single query, or multiple query execution plans. Each may have 
a different execution cost, as discussed in Section 3.2.1. Similarly, there may be 
multiple data sources that can be used to arrive at an answer to the same general 
question, though the semantics of the result may differ slightly. A semantic query 
planner considers not only the cost of different execution plans but also their 
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semantics and generates alternate paths through the network of interconnected 
data sources. The goal is to help the user obtain the best possible answers to 
questions of scientific interest. 

Web sources are ubiquitous in bioinformatics, and they are connected to each 
other in a complex tangle of relationships. Links between sources can be either 
explicit hypertext links or constructed calls in which an identifier for a remote data 
source may be extracted from a Web document and used to construct a Uniform 
Resource Identifier (URI) to access the remote source. 

Not all inter-data source links are semantically equivalent. For example, there 
are two ways of navigating from PubMed to GenBank: through explicit occur- 
rences of GenBank accession numbers within the secondary source identifier (SI) 
attribute of the MEDLINE formatted entry and through the Entrez Nucleotide 
Link display option. Following these two navigation paths does not always pro- 
duce the same set of GenBank entries: For example, for the PubMed entry with ID 
8552191, there are four embedded GenBank accession numbers, while the Nu- 
cleotide Links option yields 10 sequence entries (the four embedded entries plus 
related RefSeq entries) [43]. 

To generate alternate plans, a semantic query planner requires knowledge 
of certain characteristics of Web sources, including their query and search ca- 
pabilities, the links between sources, and overlaps between the contents of data 
sources. An example of modeling a subset of the search capabilities of PubMed is as 
follows: 

1. Search by key (PubMedID o r  MedlineID), returning a single entry. Single or 
multiple bindings for PubMedID or M e d l i n e I D  are accepted. 

2. Search by phrase, returning multiple entries. For example, the search term 
gene  e x p r e s s i o n  performs an untyped text search; s c i e n c e  [ j o u r n a l  ] 
returns all articles from Science; and 2 0 01 / 0 6 : 2 0 02 [ p d a t  ] returns articles 
published since June 2002. 

To further illustrate semantic query planning, consider the following query: "Given 
a Human Genome Organization (HUGO) name, retrieve all associated PubMed 
citations." There are at least three plans for this query: 

1. Search PubMed directly for the HUGO name using the second search capa- 
bility above. 

2. Find the GeneCards entry for the HUGO name and follow its link to PubMed 
publications. 
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3. From the GeneCards entry for the HUGO name, follow the links to the Entrez 
RefSeq entry and extract the relevant PubMed identifiers. 

These three plans all return different answers. For example, given the HUGO 
name BIRC1 (neuronal apoptosis inhibitory protein), plan 1 returns no answer, 
plan 2 returns two answers (PubMed identifiers 7813013 and 9503025), and plan 
3 returns five answers (including the two entries returned by plan 2) [43]. 

In summary, a query planner who took advantage of semantic knowledge 
of Web data sources and their search capabilities would first identify that there 
are multiple alternate sources and capabilities to answer a query. Then, semantic 
knowledge would be used to determine if the results of each alternate plan would 
be identical. Finally, such a planner might suggest these alternate plans to a user, 
whose expert judgment would determine which plan was the most suitable to the 
scientific task. The user would be freed to focus on science instead of on navigating 
the often treacherous waters of data source space. Semantic query planning will 
be addressed in more detail in Section 4.4.2 in Chapter 4. 

3.6.2 Schema Management 
A schema management system supports databases and information systems as 
they deal with a multitude of schemas in different versions, structure, semantics, 
and format. Schema management is required whenever data is transformed from 
one structure to another, such as publishing relational data as XML on a Web site, 
restructuring relational data in hierarchical form for a biological object concep- 
tual view layer, and integrating overlapping data sets with different structures, as 
needed in a merger of two large pharmaceutical companies. The system developed 
by the Clio research project [44] is an example of a basic schema management 
system with plans for development in the direction to be described. 

The six building blocks of a schema management system are listed below. 
They will be defined and illustrated through three use cases. 

�9 Schema association/schema extraction 

�9 Schema versioning/schema evolution 

�9 Schema mapping/query decomposition 

�9 View building/view composition 

�9 Data transformation 

�9 Schema integration 
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Use Case: Data Warehousing 
As described earlier, data warehousing is often used as an integration approach 
when the data must be extensively cleaned, transformed, or hand-curated. A ware- 
house may be built from a variety of data sources in different native formats. 
Schema association determines if these heterogeneous documents match a schema 
already stored in the schema manager. If no existing schema is found, schema 
extraction determines a new schema based on the data, for example, an XML 
document, and adds it to the schema manager. Schema integration helps develop a 
warehouse global schema accommodating all relevant data sources. As the ware- 
house evolves, schema mapping determines how to map between the schemas of 
newly discovered data sources and the warehouse's global schema. Finally, data 
transformation discovers and executes the complex operations needed to clean 
and transform the source data into the global warehouse schema. The transfor- 
mations generated would be specified in the XML query language (XQuery) or 
Extensible Stylesheet Language Transformations (XSLT) for XML data, and SQL 
for relational data. 

Use Case: Query and Combine Old and New Data 
Because bioinformatics is a young, research-oriented field, database schemas to 
hold lab notebook data change frequently as new experimental techniques are de- 
veloped. Industry standards are still emerging, and they evolve and change rapidly. 
Suppose two Web sites at a large pharmaceutical company were using two dif- 
ferent versions of the same database schema, but scientists wanted to query the 
old-version and new-version data sources in uniform fashion, without worrying 
about the schema versions. Schema evolution keeps track of schema versions and 
their differences. Query decomposition allows the user to query old and new doc- 
uments in a single query, as if they all conformed to the latest schema version, 
using knowledge of the differences between versions. 

Use Case: Data Federation 

Assume a federated database system integrates relational (e.g., MGD, GO, Gene- 
Lynx [45]) and XML data sources (e.g., PubMed and the output of bioinformatics 
algorithms such as BLAST) and provides integrated SQL access to them. View 
building allows users to build customized views on top of relational and XML 
schemas using a graphical interface. Schema mapping provides knowledge about 
correspondences among the different sources. To respond efficiently to queries 
against these sources, view composition and query decomposition must use the 
correspondences gained through schema mapping and view building to issue the 
right queries to the right sub-systems. Finally, knowledge about the data sources' 



capabilities and global query optimization allow the processor to push expensive 
operations to local sources as appropriate. 

3.7 SUMMARY 

Effective data management and integration are critical to the success of bioin- 
formatics, and this chapter has introduced key concepts in these technical areas. 
While the wide and varied landscape of integration approaches can seem over- 
whelming to the beginner, this chapter has offered six dimensions by which to 
characterize current and new integration efforts: browsing/querying, declarative/ 
procedural code, generic/hard-coded code, semantic/syntactic integration, data 
warehousing/federation, and relational/non-relational data model. Basic defini- 
tions and the relative strengths and weaknesses of a variety of approaches were 
explored through a series of use cases, which are summarized in Table 3.5. The 
optimal strategy for a given organization or research project will vary with its 
individual needs and constraints, but it will likely be a hybrid strategy, based on 
a careful consideration of the relative strengths and weaknesses of the various 
approaches. While many areas of data integration are solved or nearly so, tough, 
largely unsolved problems still remain. The chapter concluded by highlighting two 
of them: semantic query planning and schema management. 

3.5 

TABLE 

Use Case Preferred Approach 

3.2.1.1 Simple curated gene data source 

3.2.1.2 Retrieving genes and associated 

expression results 

3.2.3.2 Transforming database structure 

3.3.1 Multi-source heterogeneous integration 

3.4.1.1 Exploring sequences associated with 

recent articles about metalloproteases 

3.4.2.1 Database of known and predicted human 

and mouse genes and transcripts 

3.4.4 Querying through unified biological concepts 

Relational technology 

Relational technology 

Data warehousing, views 

Federation, querying 

(DiscoveryLink, 3.4.3) 

Browsing (Entrez) 

Warehouse (AllGenes) 

Semantic integration (TAMBIS) 

Summary of use cases and approaches. 
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4 
CHAPTER 

Issues to Address While 
Designing a Biological 

Information System 

Zo~ Lacroix 

Life science has experienced a fundamental revolution from traditional in vivo 
discovery methods (understanding genes, metabolic pathways, and cellular mech- 
anisms) to electronic scientific discovery consisting in collecting measurement data 
through a variety of technologies and annotating and exploring the resulting elec- 
tronic data sets. To cope with this dramatic revolution, life scientists need tools 
that enable them to access, integrate, mine, analyze, interpret, simulate, and visual- 
ize the wealth of complex and diverse electronic biological data. The development 
of adequate technology faces a variety of challenges. First, there exist thousands 
of biomedical data sources: There are 323 relevant public resources in molecular 
biology alone [1]. The number of biological resources increases at great pace. Pre- 
vious lists of key public resources in molecular biology contained 203 data sources 
in 1999 [2], 226 in 2000 [3], and 277 in 2001 [4]. Access to these data repos- 
itories is fundamental to scientific discovery. The second challenge comes from 
the multiple software tools and interfaces that support electronic-based scientific 
discovery. An early report from the 1999 U.S. Department of Energy Genome 
Program meeting [5] held in Oakland, California identified these challenges with 
the following statement: 

Genome-sequencing projects are producing data at a rate exceeding current ana- 
lytical and data-management capabilities. Additionally, some current computing 
problems are expected to scale up exponentially as the data increase. [5] 

The situation has worsened since, whereas the need for technology to support sci- 
entific discovery and bioengineering has significantly increased. Chapter 1 covers 
the reasons why, ultimately, all of these resources must be combined to form a 
comprehensive picture. Chapter 2 claims that this challenge may well constitute 
the backbone of 21st century life science research. In the past, the specific research 
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and development of geographical and spatial data management systems led to the 
emergence of an important and very active geograi3hic information systems (GIS) 
community. Likewise, the field of biological information systems (BIS) aiming to 
support life scientists is now emerging. 

To develop biological information systems, computer scientists must address 
the specific needs of life scientists. The identification of the specifications of compu- 
ter-aided biology is often impeded by difficulty of communication between life 
scientists and computer scientists. Two main reasons can be identified. First, life 
and computer scientists have radically different perspectives in their development 
activities. These discrepancies can be explained by comparing the design process in 
engineering and in experimental sciences. A second reason for misunderstanding 
results from their orthogonal objectives. A computer scientist aims to build a sys- 
tem, whereas a life scientists aims to corroborate an hypothesis. These viewpoints 
are illustrated in the following. 

Engineering vs. Experimental Science 
Software development has an approach similar to engineering. First, the speci- 
fications (or requirements) of the system to be developed are identified. Then, 
the development relies on a long initial design phase when most of the cases, 
if not all, are identified and offered a solution. Only then is a prototype imple- 
mented. Later, iterations of the loop design ~ implementation aim to correct the 
implementation's failure to perform effectively the requirements and to extend, 
significantly, the implementation to new requirements. These iterations are typ- 
ically expressed through codified versioning of the prototype. In practice, initial 
design phases are typically shortened because of drastic budget cuts and a hurry 
to market the product. However, short design phases often cause costly revisions 
that could have been avoided with appropriate design effort. 

Bioinformatics aims to support life scientists in the discovery of new biological 
insights as well as to create a global perspective from which unifying principles 
in biology can be discerned. Scientific discovery is experimental and follows a 
progress track blazed by experiments designed to corroborate or fail hypotheses. 
Each experiment provides the theory with additional material and knowledge that 
builds the entire picture. An hypothesis can be seen as a design step, whereas an 
experiment is an implementation of the hypothesis. Learning thus results from 
multiple iterations of design ~ implementation, where each refinement of an 
hypothesis is motivated by the failure of the previous implementation. 

These two approaches seem very similar, but they vary by the number of it- 
erations of design .-~ implementation. When computer scientists are in the design 
phase of developing a new system for life scientists, they often have difficulties in 
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collecting use cases and identifying the specifications of the system prior to imple- 
mentation. Indeed, life scientists are likely able to provide just enough information 
to build a prototype, which they expect to evaluate to express more requirements 
for a better prototype, and so on. This attitude led a company proposing to build 
a biological data management system to offer to "build a little, test a little" to 
ensure meeting the system requirements. Somehow the prototype corresponds to 
an experiment for a life scientist. Understanding these two dramatically different 
approaches to design is mandatory to develop useful technology to support life 
scientists. 

Generic System vs. Query-Driven Approach 

Computer scientists aim to build systems. A system is the implementation of an 
approach that is generic to many applications having similar characteristics. When 
provided with use cases or requirements for a new system, computer scientists 
typically abstract them as much as possible to identify the intrinsic characteristics 
and therefore design the most generic approach that will perform the requirements 
in various similar applications. 

Life scientists, in their discovery process, are motivated by an hypothesis they 
wish to validate. The validation process typically involves some data sets extracted 
from identified data sources and follows a pre-defined manipulation of the col- 
lected data. In a nutshell, a validation approach corresponds to a complex query 

asked against multiple and often heterogeneous data sources. Life scientists have 
a query-driven approach. 

These two approaches are orthogonal but not contradictory. Computer sci- 
entists present the value of their approach by illustrating the various queries the 
system will answer, whereas life scientists value their approach by the quality of 
the data set obtained and the final validation of the hypothesis. This orthogonality 
also explains the legacy in bioinformatics implementations, which mostly consist 
of hard-coded queries that do not offer the flexibility of a system as explained and 
illustrated in Chapters I and 3. This legacy problem is addressed in Section 4.1.2. 

This chapter does not aim to present or compare the systems that will be de- 
scribed in the later chapters of this book. Instead it is devoted to issues specific to 
data management that need to be addressed when designing systems to support 
life science. As with any technology, data management assumes an ideal world 
upon which most systems are designed. They appear to suit the needs of large 
corporate usage such as banking; however, traditional technology fails to adjust 
properly to many new technological challenges such as Web data management 
and scientific data management. The following sections introduce these issues. 
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Section 4.1 presents some of the characteristics of available scientific data and tech- 
nology. Section 4.2 is devoted to the first issue that traditional data management 
technology needs to address: changes. Section 4.3 addresses issues related to bi- 
ological queries, whereas Section 4.4 focuses on query processing. Finally, data 
visualization is addressed in Section 4.5. Bioinformaticians should find a variety 
of illustrations of the reasons why BIS need innovative solutions. 

4.1 LEGACY 

Scientific data has been collected in electronic form for many years. While new data 
management approaches are designed to provide the basis for future homogeneous 
collection, integration, and analysis of scientific data, they also need to integrate 
existing large data repositories and a variety of applications developed to analyze 
them. Legacy data and tools may raise various difficulties for their integration that 
may affect the design of BIS. 

4.1.1 Biological Data 
Scientific data are disseminated in myriad different data sources across disparate 
laboratories, available in a wide variety of formats, annotated, and stored in flat 
files and relational or object-oriented databases. Access to heterogeneous biolog- 
ical data sources is mandatory to scientists. A single query may involve flat files 
(stored locally or remotely) such as GenBank [6] or Swiss-Prot [7], Web resources 
such as the Saccharomyces Genome Database [8], GeneCards [9], or the refer- 
ences data source PubMed [10]. A list of useful biological data sources is given 
in the Appendix. These sources are mostly textual and of restricted access facili- 
ties. Their structure varies from ASN. 1 data exchange format to poorly structured 
hypertext markup language (HTML) and extensible markup language (XML) for- 
mats. This variety of repositories justifies the need to evoke data sources rather 
than databases. This chapter only refers to a database when the underlying system 
is a database management system (a relational database system, for example). A 
system based on flat files is not a database. 

Unlike data hosted in a database system, scientific data is maintained by life 
scientists through user-friendly interfaces that offer great flexibility to add and 
revise data in these data sources. However, this flexibility often affects data qual- 
ity dramatically. First, data sources maintained by a large community such as 
GenBank contain large quantities of data that need to be curated. This explains 
the numerous overlapping data sources sometimes found aiming to complete or 
correct data from existing sources. As importantly, data organization also suffers 
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from this wide and flexible access: Data fields are often completed with differ- 
ent goals and objectives, fields are missing, and so on. This flexibility is typically 
provided when the underlying data representation is a formatted file with no types 
or constraints checking. Unfortunately this variety of data representation makes 
it difficult to use traditional approaches as explained in Section 4.2.3. 

The quantity of data sources to be exploited by life scientists is overwhelming. 
Each year the number of publicly available data sources increases significantly: It 
rose 43% between 1999 and 2002 for the key molecular data sources [1, 2]. In 
addition to this proliferation of sources, the quantity of data contained in each 
data source is significantly large and also increasing. For example, as of January 1, 
2001, GenBank [6] contained 11,101,066,288 bases in 10,106,023 sequences, and 
its growth continues to be exponential, doubling every 14 months [11]. While the 
number of distinct human genes appears to be smaller than expected, in the range 
of 30,000-40,000 [12, 13], the distinct human proteins in the proteome are ex- 
pected to number in the millions due to the apparent frequency of alternative splic- 
ing, ribonucleic acid (RNA) editing, and post-translational modification [14, 15]. 
As of May 4, 2001, Swiss-Prot contained 95,674 entries, whereas PubMed 
contained more than 11 million citations. Managing these large data sets efficiently 
will be critical in the future. Issues of efficient query processing are addressed in 
Section 4.4. 

Future collaborations between computer and life scientists may improve the 
collection and storage of data to facilitate the exploitation of new scientific data. 
However, it is likely that scientific data management technology will need to 
address issues related to the characteristics of the large existing data sets that 
constitute part of the legacy of bioinformatics. 

Biological Tools and Workflows 
Scientific resources include a variety of tools that assist life scientists in searching, 
mining, and analyzing the proliferation of data. Biological tools include basic 
biosequence analyses such as FASTA, BLAST, Clustal, Mfold, Phylip, PAUP, CAP, 
and MEGA. A data management system not integrating these useful tools would 
offer little support to life scientists. Most of these tools can be used freely by load- 
ing their code onto a computer from a Web site. A list of 160 free applications 
supporting biomolecular biology is provided in Misener and Krawetz's Bioinfor- 
matics. Methods and Protocols [16]. The first problem is the various platforms 
used by life scientists: In 1998, 30-50% of biologists used Macintosh computers, 
40-70% used a PC running any version of Microsoft Windows, and less than 
10% used UNIX or LINUX [16]. Out of the 160 applications listed in Misener 
and Krawetz's book, 107 run on a PC, 88 on a Macintosh, and 42 on other systems 
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such as UNIX. Although some applications (27 listed in the previously mentioned 
book) are made available for all computer systems, most of them only run on a 
single system. The need for integration of applications, despite the system for which 
they may be designed, motivated the idea of the grid as explained in Section 4.3.4. 

Legacy tools also include a variety of hard-coded scripts in languages such as 
Perl or Python that implement specific queries, link data repositories, and perform 
a pre-defined sequence of data manipulation. Scripting languages were used ex- 
tensively to build early bioinformatics tools. However, they do not offer expected 
flexibility for re-use and integration with other functions. Most legacy integra- 
tion approaches were developed using workflows. Workflows are used in business 
applications to assess, analyze, model, define, and implement the core business 
processes of an organization (or other entity). A workflow approach automates 
the business procedures where documents, information, or tasks are passed be- 
tween participants according to a defined set of rules to achieve, or contribute 
to, an overall business goal. In the context of scientific applications, a workflow 
approach may address overall collaborative issues among scientists, as well as the 
physical integration of scientific data and tools. The procedural support a work- 
flow approach provides follows the query-driven design of scientific problems 
presented in the Introduction. In such an approach, the data integration prob- 
lem follows step-by-step the single user's query execution, including all necessary 
"business rules" such as security and semantics. A presentation of workflows and 
their model is provided online by the Workflow Management Coalition [17]. 

The integration of these tools and query pipelines into a BIS poses problems 
that are beyond traditional database management as explained in Section 4.3.4. 

4.2 A DOMAIN IN CONSTANT EVOLUTION 

A BIS must be designed to handle a constantly changing domain while managing 
legacy data and technology. Traditional data management approaches are not 
suitable to address constant changes (see Section 4.2.1). Two problems are critical 
to address for scientific data management: changes in data representation (see 
Section 4.2.2) and data identification (see Section 4.2.4). The approach presented 
in Chapter 10 addresses specifically these problems with gene expression data. 

4.2.1 Traditional Database Management and Changes 
The main assumption of traditional data management approaches relies on a pre- 
defined, unchangeable system of data organization. Traditional database manage- 
ment systems are of three kinds: relational, object-relational, or object-oriented. 
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Relational database systems represent data in relations (tables). Object-relational 
systems provide a more user-friendly data representation through classes, but they 
rely on an underlying relational representation. Object-oriented databases orga- 
nize data through classes. For the sake of simplicity, only relational databases 
are considered in this section because most of the databases currently used by 
life scientists are relational, and similar remarks could be made for all traditional 
systems. 

Data organization includes the relations and attributes that constitute a rela- 
tional database schema. When the database schema is defined, it can be populated 
by data to create an instance of the schema, in other words, a database. Each row 
of a relation is called a tuple. When a database has been defined, transactions 
may be performed to update the data contained in the database. They consist 
of insertions (adding new tuples in relations), deletions (removing tuples from 
relations), and updates (transforming one or more components of tuples in rela- 
tions). All traditional database systems are designed to support transactions on 
their data; however, they support few changes in the data organization. Changes 
in the data organization include renaming relations or attributes, removing or 
adding relations or attributes, merging or splitting relations or attributes, and so 
on. Some transformations such as renaming are rather simple, and others are com- 
plex. Traditional database systems are not designed to support complex schema 
transactions. Typically, a change in the data organization of a database is per- 
formed by defining a new schema and loading the data from the database to an 
instance of the new schema, thus creating a new database. Clearly this process is 
tedious and not acceptable when such changes have to be addressed often. Another 
approach to the problem of restructuring is to use a view mechanism that offers a 
new schema to users as a virtual schema when the underlying database and schema 
have not changed. All user interfaces provide access to the data as they are de- 
fined in the view and no longer as they are defined in the database. This approach 
offers several advantages, including the possibility of providing customized views 
of databases. A view may be limited to part of the data for security reasons, for 
example. However, this approach is rather limited as the transactions available 
through the view may be restricted. 

Another aspect of traditional database systems relies on a pre-defined identity. 
Objects stored in a relational database can be identified by a set of attributes that, 
together, characterize the object. For example, the three attributes~first name, 
middle name, and last name--can characterize a person. The set of characterizing 
attributes is called a primary key. The concept of primary key relies on a character- 
ization of identity that will not change over time. No traditional database system 
is designed to address changes in identification, such as tracking objects that may 
have changed identity over time. 
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4.2.2 Data Fusion 

4.2.3 

Data fusion corresponds to the need to integrate information acquired from mul- 
tiple sources (sensors, databases, information gathered by humans, etc.). The term 
was first used by the military to qualify events, activities, and movements to be cor- 
related and analyzed as they occurred in time and space to determine the location, 
identity, and status of individual objects (equipment and units), assess the sit- 
uation, qualitatively or quantitatively determine threats, and detect patterns in 
activity that would reveal intent or capability. 

Scientific data may be collected through a variety of instruments and robots 
performing microarrays, mass spectrometry, flow cytometry, and other proce- 
dures. Each instrument needs to be calibrated, and the calibration parameters 
may affect the data significantly. Different instruments may be used to perform 
similar tasks and collect data to be integrated in a single data set for analysis. 
The analysis is performed over time upon data sets disparate by the context of 
their collection. The analysis must be tempered by parameters that directly affect 
the quality of the data. A similar problem is presented in Section 10.4.3 in the 
context of probe arrays and gene expression. A traditional database approach re- 
quires the complete collection of measurement data and all parameters to allow 
the expression of the complex queries that enable the analysis of the disparate 
data set. Should any information be missing (N-LSLL in a table), the system ignores 
the corresponding data, an unacceptable situation for a life scientist. In addition, 
the use of any new instrument that requires the definition of new parameters may 
affect the data organization, as well as make the fusion process more complex. The 
situation is made even more complex by the constant evolution of the protocols. 
Their new specifications often change the overall data organization: Attributes 
may be added, split, merged, removed, or renamed. Traditional database systems' 
difficulty with these issues of data fusion explains the current use of Microsoft 
Excel spreadsheets and manual computation to perform the integration prior to 
analysis. The database system is typically used as a storage device. 

Can a traditional database system be adjusted to handle these constant and 
complex changes in the data organization? It is unlikely. Indeed, all traditional ap- 
proaches rely strongly on a pre-defined and stale data organization. A BIS shall of- 
fer great flexibility in the data organization to meet the needs of life scientists. New 
approaches must be designed to enable scientific data fusion. A solution is to relax 
the constraint on the data representation, as presented in the following section. 

Fully Structured vs. Semi-Structured 

Traditional database approaches are too structured: When the schema is defined, 
it is difficult to change it, and they do not support the integration of similar, but 
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disparate, data sets. A solution to this need for adherence to a structure is offered 
by the semi-structured approach. In the semi-structured approach, the data or- 
ganization allows changes such as new attributes and missing attributes. Semi- 
structured data is usually represented as an edge-labeled, rooted, directed graph 
[18-20]. Therefore, a system handling semi-structured data does not assume a 
given, pre-defined data representation: A new attribute name is a new labeled edge, 
a new attribute value is a new edge in the graph, and so on. Such a system should 
offer greater flexibility than traditional database systems. An example of represen- 
tation of semi-structured data is XML, the upcoming standard for data exchange 
on the Web designed by the World Wide Web Consortium (W3C). XML extends 
the basic tree-based data representation of the semi-structured model by order- 
ing elements and providing various levels of representation such as XML Schema 
[21-23]. These additional characteristics make XML data representation signifi- 
cantly less flexible than the original semi-structured data model. Fully structured 
data representation, semi-structured data representation, and XML are presented 
in Data on the Web [24]. 

There are currently two categories of XML management systems: XML- 
enabled and native XML. The first group includes traditional database systems 
extended to an XML interface for collection and publication. However, the un- 
derlying representation is typically with tables. Examples of XML-enabled sys- 
tems are Oracle9i I and SQL Server 2000. 2 These systems were mostly designed to 
handle Business-to-Business (B2B) and Business-to-Customer (B2C) business tasks 
on the Web. They have not yet proven useful in scientific contexts. Native XML 
systems such as Tamino, 3 ToX, 4 and Galax s rely on a real semi-structured ap- 
proach and should provide a flexibility interesting in the context of scientific data 
management. 

Because of XML's promising characteristics, and because it is going to be the 
lingua franca for the Web, new development for BIS should take advantage of 
this new technology. A system such as KIND, presented in Chapter 12, already 
exploits XML format. However, the need for semantic data integration in ad- 
dition to syntactic data integration (as illustrated in Section 4.2.5) limits the 
use of XML and its query language in favor of approaches such as description 
logics. 

1. Oracle9i was developed by the Oracle corporation (see http://www.oracle.com). 
2. SQL Server 2000 is a product of the Microsoft Corporation (see http.//www.microsoft.com). 
3. Tamino XML server is a commercial XML management system from SoftwareAG. 

4. ToX is an academic XML management system being developed at the University of Toronto. 

5. Galax was developed at the Bell Laboratory of Lucent Technology (see http.//db.bell-labs.com/ 
galax). 
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4.2.4 Scientific Object Identity 
Scientific objects change identification over time. Data stored in data sources can 
typically be accessed with knowledge of their identification or other unique char- 
acterization initially entered into the data bank. Usually, each object of interest 
has a name or an identifier that characterizes it. However, a major problem arises 
when a given scientific object, such as a gene, may possess as many identifiers 
as there are data sources that contain information about it. The challenge is to 
manage these semantic heterogeneities at data access, as the following example 
illustrates. 

Gene names change over time. For example, the Human Gene Nomencla- 
ture Database (HUGO) [25] contains 13,594 active gene symbols, 9635 literature 
aliases, and 2739 withdrawn symbols. In HUGO, SIR2L1 (withdrawn) is a syn- 
onym to SIRT1 (the current approved HUGO symbol) and sir2-1ike 1. P53 is a 
withdrawn HUGO symbol and an alias for TP5 3 (current approved HUGO sym- 
bol). When a HUGO name is removed, not all data sources containing the name 
are updated. Some information, such as the content of PubMed, will actually never 
be updated. 

Table 4.1 illustrates the discrepancies found when querying biological data 
sources with equivalent (but withdrawn or approved) HUGO names in Novem- 
ber 2001. The Genome DataBase (GDB) is the official central repository for ge- 
nomic mapping data resulting from the Human Genome Initiative [26]. GenAtlas 
[27, 28] provides information relevant to the mapping of genes, diseases, and 
markers. Online Mendelian Inheritance in Man (OMIM) [29, 30] is a catalog 
of human genes and genetic disorders. GeneCards [9] is a data source of human 
genes, their products, and their involvement in diseases. LocusLink [31, 32] pro- 
vides curated sequence and descriptive information about genetic loci. 

Querying GDB with TP53 or its alias P53 does not affect the result of the 
query. However, SIRT1 returns a single entry, whereas its alias does not return 

4.1 

TABLE 

HUGO name GDB GenAtlas OMIM GeneCards LocusLink 

TP53 1 33 52 22 13 

P53 1 (same) 17 188 69 63 

SIRT1 1 0 5 1 2 

SIR2L1 0 0 1 1 (same) 2 (same) 

Number of entries retrieved with HUGO names from GDB, GenAtlas, OMIM, 
GeneCards, and LocusLink. 
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any entry. GenAtlas returns more entries for the approved symbol TP53 than 
the withdrawn symbol P53. The question, then, is to determine if the entries 
corresponding to a withdrawn symbol are always contained in the set of entries 
returned for an approved symbol. This property does not hold in OMIM. OMIM 
returns many more entries for the withdrawn symbol P53 than the approved 
symbol TP53. However, it shows opposite behavior with SIRT1 and its alias. This 
demonstrates that even with the best understood and most commonly accepted 
characteristic of a gene--its identification--ahernate identifier values need to be 
used when querying multiple data sources to get complete and consistent results. 
This problem requires significant domain expertise to resolve but is critical to the 
task of obtaining a successful, integrated biological information system. 

The problem of gene identity is made more complex when the full name, 
alternative titles, and description of a gene are considered. Depending on the 
number of data sources that describe the gene, it may have that many equivalent 
source identifiers. For example, SIRT1 is equivalent to the full name (from HUGO) 
of sirtuin (silent mating type information regulation 2, S. cerevisiae, homolog) 1. 
This is also its description in LocusLink, but it has the following alternative title in 
OMIM:SIR2, S. CEREVISIAE, HOMOLOG-LIKE 1. These varying qualifications 
can often be easily discerned by humans, but they prove to be very difficult when 
automated. Here, too, extensive domain expertise is needed to determine that 
these descriptions each represent the very same gene, SIRT1. Although this is 
difficult, it does not describe the entire problem. There are as many identifiers 
to SIRT1 as there are data sources describing the gene. For example, SIRT1 
also corresponds to 604479 (OMIM number), AF083106 (GenBank accession 
number), and 9956524 (GDB ID). Even UniGene clusters may have corresponding 
aliases. For example, Hs. 1846 (the UniGene cluster for P53) [33] is an alias for 
H s .  10 3 9 9 7 (primary cluster for TP5  3 ). 

Existing traditional approaches do not address the complex issues of scientific 
object identity. However, recent work on ontologies may provide solutions to these 
issues. 

Concepts and Ontologies 
An ontology is a collection of vocabulary words that define a community's under- 
standing of a domain. Terms are labels for concepts, which reside in a lattice of 
relationships between concepts. There have been significant contributions to the 
specification of standards and ontologies for the life science community as detailed 
in Chapter 2. In addition, some BIS were designed to provide users' access to data 
as close as possible to their understanding. The system [34] based on the Object 
Protocol Model (OPM), developed at Lawrence Berkeley Laboratory and later 
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extended and maintained at Gene Logic, provides data organization through 
classes and relationships to the user (see Chapter 10). The most successful such 
approach is TAMBIS (see Chapter 7), which was developed to allow users to ac- 
cess and query their data sets through an ontology. Such approaches are friendly 
because they allow life scientists to visualize the data sets through their under- 
standing of the overall organization (concepts and relationships) as opposed to an 
arbitrary and often complex database representation with tables or a long list of 
tags of a flat file. 

A solution to the problem of capturing equivalent representations of objects 
consists in using concepts. For example, a concept gene can have a primary 
identity (its approved HUGO symbol) and equivalent representations (withdrawn 
HUGO names, aliases, etc.). There are many ways to construct these equivalent 
classes. One way consists in collecting these multiple identities and materializing 
them within a new data source. This approach was partially completed in LENS, 
which was developed at the University of Pennsylvania, and GeneCards. This 
first approach captures the expertise of life scientists, and these data sources are 
usually well curated. To make this task scalable to all the scientific objects of 
interest, specific tools need to be developed to enhance and assist scientists in the 
task of managing the identity of scientific objects. While this expertise could be 
materialized within a new data source, it is critical that it is used by a BIS to alert 
the biologist when it recognizes alternate identifiers that could lead to incomplete 
or inconsistent results. This approach could use entity matching tools [35, 36] that 
capture similarities in retrieved objects and are appropriate for matching many of 
the functional attributes such as description or alternate titles. 

Recent work in the context of the Semantic Web activity of the W3C may 
develop more advanced technology to provide users a sound ontology layer to 
integrate their underlying biological resources. However, these approaches do not 
yet provide a solution to the problem of capturing equivalent representations of 
scientific objects, as presented in Section 4.2.4. 

4.3 BIOLOGICAL QUERIES 

The design of a BIS strongly depends on how it is going to be used. Section 1.4 
of Chapter 1 presents the successive design steps, and Chapter 3 illustrates vari- 
ous design requirements with use cases. Traditional database approaches assume 
that the relational algebra, or query languages such as the Structured Query Lan- 
guage (SQL) or the Object Query Language (OQL), enable users to express all 
their queries. Life science shows otherwise. Similar to geographical information 
systems that aim to let users express complex geometric, topological, or algebraic 
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queries, BIS should enable scientists to express a variety of queries that go beyond 
the relational algebra. The functionalities required by scientists include sophisti- 
cated search mechanisms (see Section 4.3.1) and navigation (see Section 4.3.2), in 
addition to standard data manipulation. In traditional databases, the semantics of 
queries are usually bi-valued: true or false. Practice shows that scientists wish to 
access their data sets through different semantic layers and would benefit from the 
use of probabilistic or other logical methods to evaluate their queries, as explained 
in Section 4.3.3. Finally, the complexity of scientific use cases and the applications 
that support them may drive the design of a BIS to middleware as opposed to a 
traditional data-driven database approach. 

Searching and Mining 
Searching typically consists in retrieving entries similar to a given string of char- 
acters (phrase, keyword, wildcard, DNA sequence, etc.). In most cases, the data 
source contains textual documents, and when searching the data source, users ex- 
pect to retrieve documents that are similar to a given phrase or keyword. Search 
engines, such as Glimpse 6 used to provide search capabilities to GeneCards, use 
an index to retrieve documents containing the keywords and a ranking system 
to display ordered retrieved entries. Searching against a sequence data source 
is performed by honed sequence similarity search engines such as FASTA [37], 
BLAST [38], and LASSAP [39]. To search sequences, the input string is a se- 
quence, and the ranking of retrieved sequences is customized with a variety of 
parameters. 

Data mining aims to capture patterns out of large data sets with various 
statistical algorithms. Data mining can be used to discover new knowledge about 
a data set or to validate an hypothesis. Mining algorithms are often combined with 
association rules, neural networks, or genetic algorithms. Unlike searching, the 
data mining approach is not driven by a user's input expressed through a phrase 
nor does it apply to a particular data format. Mining a database distinguishes 
itself from querying a database by the fact that a database query is expressed in 
a language such as SQL and therefore only captures information organized in 
the schema. In contrast, a mining tool may exploit information contained in the 
database that was not organized in the schema and therefore not accessible by a 
traditional database query. 

Most of the query capabilities expected by scientists fall under searching and 
mining. This was confirmed by the results of a survey of biologists in academia 

6. The Glimpse search engine was developed and is maintained at the University of Arizona and is 
available at http.//glimpse.cs.arizona.edu/. 
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and industry in 2000 [40], where 315 tasks and queries were collected from the 
answers to the following questions: 

1. What tasks do you most perform? 

2. What tasks do you commonly perform, that should be easy, but you feel are 
too difficult? 

3. What questions do you commonly ask of information sources and analysis 
tools? 

4. What questions would you like to be able to ask, given that appropriate 
sources and tools existed, that may not currently exist? 

Interestingly, 54% of the collected tasks could be organized into three categories: 
(1) similarity search, (2) multiple pattern and functional motif search, and (3) 
sequence retrieval. Therefore, more than half of the identified queries of interest 
to biologists involve searching or mining capabilities. 

Traditional database systems provide SQL as a query language, based on 
the relational algebra composed of selection (or), projection (Jr), Cartesian prod- 
uct (x), join (>~), union (u), and intersection (n). These operators perform data 
manipulation and provide semantics equivalent to that of first order logic [41]. 
In addition, SQL includes all arithmetic operations, predicates for comparison 
and string matching, universal and existential quantifiers, summary operations 
for max/min or c o u n t / s u m ,  and GROUP BY and HAVING clauses to partition ta- 
bles by groups [42]. Commercial database systems extended the query capabilities 
to a variety of functionalities, such as manipulation of complex datatypes (such as 
numeric, string, date, time, and interval), OLAP, and limited navigation. However, 
none of these capabilities can perform the complex tasks specified by biologists in 
the 2000 survey [40]. 

Other approaches provide search capabilities only, and while failing to support 
standard data manipulation, they are useful for handling large data sets. They 
are made available to life scientists as Web interfaces that provide textual search 
facilities such as GeneCards [9], which uses the powerful Glimpse textual search 
engine [43], the Sequence Retrieval Service (SRS) [44], and the Entrez interface 
[45]. GeneCards provides textual search facilities for curated data warehoused in 
files. SRS, described in detail in Chapter 5, integrates data sources by indexing 
attributes. It enables queries composed of combinations of textual keywords on 
most attributes available at integrated databases. Entrez proposes an interesting 
approach to integrating resources through their similarities. It uses a variety of 
similarity search tools to index the data sources and facilitate their access through 
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search queries. For instance, the neighbors of a sequence are its homologs, as 
identified by a similarity score using the BLAST algorithm [38]. On the other hand, 
the neighbors of a PubMed citation are the articles that use similar terms in their 
title and abstract [46]. These approaches are limited because they do not allow 
customized access to the sources. A user looking for PubMed references that have 
direct protein links will not be able to express the query through Entrez because 
the interface is designed to retrieve the protein linked from a given citation, not to 
retrieve all citations linked to a protein. This example, as well as others collected in 
a 1998 Access article by L. Wong [47], illustrates the weakness of these approaches. 
A real query language allows customization, whereas a selection of capabilities 
limits significantly the range of queries biologists are able to ask. 

Biologists involve in their queries a variety of search and mining tools and 
employ traditional data manipulation operators to support their queries. In fact, 
they often wish to combine them all within a single query. For example, a typical 
query could start with searching PubMed and only retrieve the references that have 
direct protein links [47]. Most systems do not support this variety of functionalities 
yet. Systems such as Kleisli and DiscoveryLink, presented in Chapters 6 and 11, 
specifically address this issue. 

4.3.2 Browsing 
Biologists aim to perform complex queries as described in Section 4.3.1, but they 
also need to browse and navigate the data sets. Systems such as OPM and TAMBIS 
(see Chapter 7) are designed to provide a user-friendly interface that allows queries 
through ontologies or object classes, as presented in Section 4.2.5. But they do 
not provide navigational capabilities that enable access to other scientific ob- 
jects through a variety of hyperlinks. Web interfaces such as GeneCards offer 
a large variety of hyperlinks that enable users to navigate directly to other re- 
sources such as GenBank, PubMed, and European Molecular Biology Laboratory 
(EMBL) [34, 48, 76]. Entrez, the Web interface to PubMed, GenBank, and an 
increasing number of resources hosted at the National Center for Biotechnol- 
ogy Information (NCBI) offer the most sophisticated navigational capabilities. 
All 15 available resources (as of July 2002) are linked together. For example, 
a citation in PubMed is linked to related citations in PubMed via the R e l a t e d  
A r t i c l e s ,  linked to relevant sequences or proteins, respectively, via the 
Nucleotide Link or the Protein Link. The links are completed by a va- 

riety of hyperlinks available in the display of retrieved entries. These navigational 
capabilities complete the query capabilities and assist the biologists in fulfilling 
their needs. 
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The recent development of XML and its navigational capabilities make XPath 
[49], the language designed to handle navigational queries, and XQuery [50], its 
extension to traditional data management queries as well as to document queries, 
good candidates for query languages to manipulate scientific data. There are addi- 
tional motivations for choosing XML technology to handle scientific data. XML is 
designed as the standard for data exchange on the Web, and life scientists publish 
and collect large amounts of data on the Web. In addition, the need for a flexible 
data representation already evoked the choice of XML in Section 4.2.3. Scientific 
data providers such as NCBI already offer data in XML format. 

Although clearly needed, the development of a navigational foreground for 
biological data raises complex issues of semantics, as will be presented in Sec- 
tion 4.5.2. 

4.3.3 Semantics of Queries 
Traditional database approaches use bi-valued semantics: true or false. When a 
query is evaluated, should any data be missing, the output is NULL. Such semantics 
are not appropriate for many biological tasks. Indeed, biologists often attempt to 
collect data with exploring queries, despite missing information. An attribute NULL 
does not always mean that the value is null but rather that the information is not 
available yet or is available elsewhere. The rigid semantics of traditional databases 
may be frustrating for biologists who aim to express queries with different layers 
of semantics. 

Knowledge-based approaches [51] may be used to provide more flexibility. 
In knowledge bases, reasoning about the possible courses of action replaces the 
typical database evaluation of a query. Knowledge bases rely on large amounts 
of expertise expressed through statements, rules, and their associated semantics. 
Extending BIS with knowledge-based reasoning provides users with customized 
semantics of queries. BIS can be enhanced by the use of temporal logic that assumes 
the world to be ordered by time intervals and allows users to reason about time 
(e.g., "Retrieve all symptoms that occurred before event A") or fuzzy logic that 
allows degrees of truth to be attached to statements. Therefore, a solution con- 
sists in providing users with a hybrid query language that allows them to express 
various dependency information, or lack thereof, between events and build a log- 
ical reasoning framework on top of such statements of probability. Such an ap- 
proach has been evaluated for temporal databases [52] and object databases [53]. 
BIS also could benefit from approaches that would cover the need for addressing 
object identity as presented in Section 4.2.4, as well as semantic issues such as 
those to be addressed in Sections 4.4.2 and 4.5.2. 
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4.3.4 Tool-Driven vs. Data-Driven Integration 

Most existing BIS are data-driven: They focus on the access and manipulation 
of data. But should a BIS really be data-driven? It is not that clear. A traditional 
database system does not provide any flexibility in the use of additional function- 
alities. The query language is fixed and does not change. Public or commercial 
platforms aim to offer integrated software; however, their approach does not 
provide the ability to integrate easily and freely new softwares as they become 
available or improve. Commercial integrated platforms also are expensive to use. 
For scientists with limited budgets, free software is often the only solution. 

Some systems provide APIs to use external programs, but the system is no 
longer the central query processing system; it only processes SQL queries, and an 
external program executes the whole request. The problem with this approach is 
that the system, which uses a database system as a component, no longer bene- 
fits from the database technology, including efficient query processing (as will be 
presented in Section 4.4). 

Distributed object technology has been developed to cope with the hetero- 
geneous and distributed computing environment that often forces information to 
be moved from one machine to another, disks to be cross-mounted so different 
programs can be run on multiple systems, and programs to be re-written in a differ- 
ent programming language to be compiled and executed on another architecture. 
The variety of scientific technology presented in Section 4.1.2 often generates 
significant waste of time and resources. Distributed object technology includes 
Common Object Request Broker Architecture (CORBA), Microsoft Distributed 
Component Object Model (DCOM), and Java Remote Method Invocation (RMI). 
This technology is tools-driven and favors a computational architecture that in- 
teroperates efficiently and robustly. Unlike traditional databases, it allows flexible 
access to computational resources with easy registration and removal of tools. 
For these reasons, many developers of BIS are currently using this technology. 
For sake of efficiency, a new version of TAMBIS no longer uses CPL but provides 
a user-friendly ontology of biological data sources using CORBA clients to re- 
trieve information from these sources [54] (see Chapter 5). CORBA appears to be 
suitable for creating wrappers via client code generation from interface definition 
language (IDL) definitions. The European Bioinformatics Institute (EBI) is leading 
the effort to make its data sources CORBA compliant [48, 55]. Unfortunately, 
most data providers do not agree with this effort. Concurrent to the CORBA ef- 
fort, NCBI, the American institute, and EBI provide their data sources in XML 
format. 

A lot of interest has been given to grid architectures. A grid architecture aims to 
enable computing as well as data resources to be delivered and accessed seamlessly, 
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transparently, and dynamically, when needed, on the Internet. The name grid was 
inspired by the electricity power grid. A biologist should be able to plug into the 
grid like an appliance is plugged into an outlet and use resources available on the 
grid transparently. The grid is an approach to a new generation of BIS. Examples 
of grids include the Open Grid Services Architecture (OGSA) [56] and the open 
source problem-solving environment Cactus [57]. TeraGrid [58] and DataGrid 
[59] are international efforts to build grids. 

These tool-driven proposals do not yet solve the many problems of resource 
selection, query planning, optimization, and other semantics issues as will be pre- 
sented in Sections 4.4 and 4.5;. 

4.4 QUERY PROCESSING 

In the past, query processing often received less attention from designers of BIS. 
Indeed, BIS developers devoted most of their effort to meeting the needs for inte- 
gration of data sets and applications and providing a user-friendly interface for sci- 
entists. However, as the data sets get larger, the applications more time-consuming, 
and the queries more complex, the specification for fast query processing becomes 
critical. 

4.4.1 Biological Resources 
A BIS must adequately capture and exploit the diverse, and often complex, query 
processing, or other computational capabilities of biological resources by spec- 
ifying them in a catalog and using them at both query formulation and query 
evaluation. The W3C Semantic Web Activity [60, 61] aims to provide a meta-data 
layer to permit people and applications to share data on the Web. Recent efforts 
within the bioinformatics community address the use of OIL [62] to capture alter- 
native representations of data to extend biomolecular ontologies [63]. Such efforts 
focusing on data representation of the contents of the sources must be extended 
to capture meta-data along several dimensions, including (1) the coverage of the 
information sources, (2) the capabilities, links, and statistical patterns, (3) the data 
delivery patterns of the resources, and (4) data representation and organization at 
the source. 

The coverage of information sources is useful in solving the so-called source 
relevance problem, which involves deciding which of the myriad sources are rel- 
evant for the user and to evaluate the submitted query. Directions to characterize 
and exploit coverage of information sources include local, closed world assump- 
tions, which state that the source is complete for a specific part of the database 
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[64, 65]; quantifications of coverage (e.g., the database contains at least 90% 
of the sequences), or intersource overlaps (e.g., the EMBL Nucleotide Sequence 
Database has a 75% likely overlap with DDBJ for sequences annotated with "cal- 
cium channel") [66-68]. Characterizing coverage enables the exploitation of cov- 
erage positioning of data sources from complement to partial or complete overlap 
(mirror sites). 

Source capabilities capture the types of queries supported by the sources, the 
access pattern limitations, the ability to handle limited disjunction, and so on. Al- 
though previous research has addressed capabilities [69-74], it has not addressed 
the diverse and complex capabilities of biological sources. Recent work aims to 
identify the properties of sophisticated source capabilities including text search 
engines, similarity sequence search engines such as BLAST, and multiple sequence 
alignment tools such as Cluster [75, 76]. Their characteristics are significantly 
more complex than the capabilities addressed up to now, and their use is dramat- 
ically costly in terms of processing time. In addition, many of the tools are closely 
coupled to the underlying source, which requires the simultaneous identification 
of capabilities and coverage. 

Statistical patterns include the description of information clusters and the 
selectivities of all or some of the data access mechanisms and capabilities. The 
use of simple statistical patterns has been studied [65, 66, 77]. However, BIS 
should exploit statistical patterns of real data sources that are large, complex, and 
constantly evolving (as opposed to their simplified simulations). 

Delivery patterns include the response time, that is, units of time needed to 
receive the first block of answers, the size of these blocks and so on. Delivery 
patterns may affect the query evaluation process significantly. Depending on the 
availability of the proper indices, a source may either return answers in decreasing 
order of matching (from best to worst) or in an arbitrary (unordered) manner. 
Other delivery profiles include whether information can be provided in a sorted 
manner for certain attributes or not. These types of profiles will be essential in 
identifying sources to get the first, best answers. This is useful when a user expects 
to get the answers to a query sorted in a pre-defined relevant order (the more 
relevant answers are the first returned). Delivery patterns can also be exploited 
to provide users with a faster, relevant, but maybe incomplete answer to a query. 
BIS should exploit delivery patterns in conjunction with the actual capabilities 
supported by the sources. 

The access and exploitation of the previously mentioned meta-knowledge of 
biological resources offers several advantages. First, it enables the comparison of 
diverse ways to evaluate a query as explained in the next section. Further, it can 
characterize the most efficient way to evaluate a query, as will be presented in 
Section 4.4.3. 



4 Issues to Address While Designing a Biological Information System 

4.4.2 Query Planning 
Query planning consists in considering the many potential combinations of 
accesses to evaluate a query. Each combination is a query evaluation plan. Con- 
sider the query (Q) defined as follows. 

(Q) "Return accession numbers and definitions of GenBank EST sequences that 

are similar (60% identical over 50AA) to "Calcium channel" sequences in Swiss- 

Prot that have references published since 1995 and mention "brain.'" [78] 

There exist many plans to evaluate the query. One possible plan for this query 
is illustrated in Figure 4.1 and described as follows: (1) access PubMed and retrieve 
references published since 1995 that mention b r a i n ;  (2) extract from all these 
references the Swiss-Prot identifiers; (3) obtain the corresponding sequences from 
Swiss-Prot whose function is calcium channel; and (4) execute a BLAST search 
using a wrapped BLAST application to retrieve similar sequences from GenBank 
( g b e s t  sequences). 

Figure 4.2 presents an alternative approach that first accesses Swiss-Prot and 
retrieves sequences whose function is c a l c i u m  c h a n n e l .  In parallel, it retrieves 
the citations from PubMed that mention b r a i n  and are published since 1995 and 
extracts sequences from them. Then it determines which sequences are in common. 
Finally, it executes a BLAST search to retrieve similar sequences from GenBank 
(gbest sequences). 

Scientific resources overlap significantly. The variety of capabilities, as well as 
the coverages and statistical patterns presented in Section 4.4.1, offer many alter- 
native evaluation plans for a query. The number of evaluation plans is exponen- 
tial to the size of similar resources. Therefore not all plans should be evaluated to 
answer a query. To select the plan to evaluate a given query, first the semantics of the 
plan should be captured accurately. Indeed, two plans may be similar and yet not 
semantically equivalent. For example, suppose a user is interested in retrieving the 
sequences relevant to the article entitled "Suppression of Apoptosis in Mammalian 
Cells by NAIP and a Related Family of IAP Genes" published in Nature and refer- 
enced by 8 5 52191 in PubMed. A first plan is to extract the GenBank identifiers ex- 
plicitly provided in the MEDLINE format of the reference. A second plan consists 
in using the capability N u c l e o t i d e  Link,  provided at NCBI. The two plans are 
not semantically equivalent because the first plan returns four GenBank identifiers 
when the Nucleotide Link returns eight GenBank identifiers (as of August 2001). 

Verifying whether two plans are semantically equivalent, that is, if the answers 
that are returned from the two plans are identical, is non-trivial and depends on 
the meta-data of the particular resources used in each plan. This issue is closely 



4.4 Query Processin . . . . . . . .  ~..~,,. ,~__:~..:z~~~~_ . . . .  ~~~=~.----_____~-o~=.,~---,~. 95 

4.1 

FIGURE 

4.4.3 

I H 1 (AccNo, Def) 

( OepJ~ 1 
Sequence 

/ 
i Intema'~ 1 
Ca channel ) 

I DepJ~ 1 
Swiss-ProtId 

I I xtema'~ 1 Swiss-Prot 
(Swiss-Protld) 

I 1-I 
Swiss-ProtId 

I External ~ 1 l~bMed 
(brain, 1995) 

x.. 
~ Extemal~ 
/ BLAST / 
](Sequence, | 
t. 6o~, 5oaA~j 

First plan for evaluating query (Q) [75]. 

related to navigation over linked resources as will be presented in Section 4.5.2. 
In addition, two semantically equivalent plans may differ dramatically in terms of 
efficiency, as is explained in the next section. 

Query Optimization 
Query optimization [79, 80] is the science and the art of applying equivalence rules 
to rewrite the tree of operators evoked in a query and produce an optimal plan. 
A plan is optimal if it returns the answer in the least time or using the least space. 
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There are well known syntactic, logical, and semantic equivalence rules used dur- 
ing optimization [79]. These rules can be used to select an optimal plan among 
semantically equivalent plans by associating a cost with each plan and selecting the 
lowest overall cost. The cost associated with each plan is generated using accurate 
metrics such as the cardinality or the number of result tuples in the output of each 
operator, the cost of accessing a source and obtaining results from that source, and 
so on. One must also have a cost formula that can calculate the processing cost 
for each implementation of each operator. The overall cost is typically defined as 
the total time needed to evaluate the query and obtain all of the answers. 
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The characterization of an optimal, low-cost plan is a difficult task. The 
complexity of producing an optimal, low-cost plan for a relational query is NP- 
complete [79-81]. However, many efforts have produced reasonable heuristics 
to solve this problem. Both dynamic programming and randomized optimization 
based on simulated annealing provide good solutions [82-84]. 

A BIS could be improved significantly by exploiting the traditional database 
technology for optimization extended to capture the complex metrics presented 
in Section 4.4.1. Many of the systems presented in this book address optimization 
at different levels. K2 (see Chapter 8 Section 8.1) uses rewriting rules and a cost 
model. P/FDM (see Chapter 9)combines traditional optimization strategies, such 
as query rewriting and selection of the best execution plan, with a query-shipping 
approach. DiscoveryLink (see Chapter 11) performs two types of optimization: 
query rewriting followed by a cost-based optimization plan. KIND (see Chapter 
12) is addressing the use of domain knowledge into executable meta-data. The 
knowledge of biological resources can be used to identify the best plan with query 
(Q) defined in Section 4.4.2 as illustrated in the following. 

The two possible plans illustrated in Figures 4.1 and 4.2 do not have the same 
cost. Evaluation costs depend on factors including the number of accesses to each 
data source, the size (cardinality) of each relation or data source involved in the 
query, the number of results returned or the selectivity of the query, the number 
of queries that are submitted to the sources, and the order of accessing sources. 

Each access to a data source retrieves many documents that need to be parsed. 
Each object returned may generate further accesses to (other) sources. Web accesses 
are costly and should be as limited as possible. A plan that limits the number of 
accesses is likely to have a lower cost. Early selection is likely to limit the number 
of accesses. For example, the call to PubMed in the plan illustrated in Figure 4.1 
retrieves 81,840 citations, whereas the call to GenBank in the plan in Figure 4.2 
retrieves 1616 sequences. (Note that the statistics and results cited in this paper 
were gathered between April 2001 and April 2002 and may no longer be up to 
date.) If each of the retrieved documents (from PubMed or GenBank) generated 
an additional access to the second source, clearly the second plan has the potential 
to be much less expensive when compared to the first plan. 

The size of the data sources involved in the query may also affect the cost 
of the evaluation plan. As of May 4, 2001, Swiss-Prot contained 95,674 entries 
whereas PubMed contained more than 11 million citations; these are the values 
of cardinality for the corresponding relations. A query submitted to PubMed (as 
used in the first plan) retrieves 727,545 references that mention brain, whereas it 
retrieves 206,317 references that mention brain and were published since 1995. 
This is the selectivity of the query. In contrast, the query submitted to Swiss-Prot 
in the second plan returns 126 proteins annotated with calcium channel. 
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In addition to the previously mentioned characteristics of the resources, the 
order of accessing sources and the use of different capabilities of sources also af- 
fects the total cost of the plan. The first plan accesses PubMed and extracts values 
for identifiers of records in Swiss-Prot from the results. It then passes these values 
to the query on Swiss-Prot via the join operator. To pass each value, the plan may 
have to send multiple calls to the Swiss-Prot source, one for each value, and this 
can be expensive. However, by passing these values of identifiers to Swiss-Prot, the 
Swiss-Prot source has the potential to constrain the query, and this could reduce 
the number of results returned from Swiss-Prot. On the other hand, the second 
plan submits queries in parallel to both PubMed and Swiss-Prot. It does not pass 
values of identifiers of Swiss-Prot records to Swiss-Prot; consequently, more results 
may be returned from Swiss-Prot. The results from both PubMed and Swiss-Prot 
have to be processed (joined) locally, and this could be computationally expen- 
sive. Recall that for this plan, 206,317 PubMed references and 126 proteins from 
Swiss-Prot are processed locally. However, the advantage is that a single query has 
been submitted to Swiss-Prot in the second plan. Also, both sources are accessed 
in parallel. 

Although it has not been described previously, there is a third plan that should 
be considered for this query. This plan would first retrieve those proteins annotated 
with calcium channel from Swiss-Prot and extract MEDLINE identifiers from these 
records. It would then pass these identifiers to PubMed and restrict the results to 
those matching the keyword brain. In this particular case, this third plan has the 
potential to be the least costly. It submits one sub-query to Swiss-Prot, and it 
will not download 206,317 PubMed references. Finally, it will not join 206,317 
PubMed references and 126 proteins from Swiss-Prot locally. 

Optimization has an immediate impact in the overall performance of the 
system. The consequences of the inefficiency of a system to execute users' queries 
may affect the satisfaction of users as well as the capabilities of the system to 
return any output to the user. These issues are presented in Chapter 13. 

4.5 VISUALIZATION 

An important issue when designing a BIS is visualization. Scientific data are avail- 
able in a variety of media, and life scientists expect to access all these data sets 
by browsing through correspondences of interest, regardless of the medium or the 
resource used. The ability to combine and visualize data is critical to scientific 
discovery. For example, KIND presented in Chapter 12 provides several visual 
interfaces to allow users to access and annotate the data. For example, the spatial 
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annotation tool displays 2D maps of brain slices when another interface shows 
the UMLS concept space. 

Multimedia Data 

Scientific data are multimedia; therefore, a BIS should be designed to manage 
images, pathways, maps, 3D structures, and so on regardless of their various for- 
mats (e.g., raster, bitmap, GIF, TIFF, PCX). An example of the variety of data for- 
mats and media generated within a single application is illustrated in Chapter 10. 
Managing multimedia data is known to be a difficult task. A multimedia manage- 
ment system must provide uniform access transparent to the medium or format. 
Designing a multimedia BIS raises new challenges because of the complexity and 
variety of scientific queries. The querying process is an intrinsic part of scientific 
discovery. A BIS user's interface should enable scientists to visualize the data in 
an intuitive way and access and query through this representation. Not only do 
scientists need to retrieve data in different media (e.g., images), but they also need 
the ability to browse the data with maps, pathways, and hypertext. This means 
a BIS needs to express a variety of relationships among scientific objects. The 
difficulties mentioned previously regarding the identification of scientific objects 
(see Section 4.2.4) are dramatically increased by the need to capture the hier- 
archy of relationships. Scientific objects such as genes, proteins, and sequences 
can be seen as classes in an entity-relationship (ER) model; and a map can be 
seen as the visualization of a complex ER diagram composed of many classes, 
isa relationships, relationships, and attributes. Each class can be populated by 
data collected from different data sources and the relationships corresponding 
to different source capabilities. For example, two classes, gene  and p u b l i c a -  
t i o n ,  can be respectively populated with data from GeneCards and PubMed. 
The relationship from the class gene  to the class p u b l i c a t i o n ,  expressing the 
publications in which the gene was published, can be implemented by captur- 
ing the capability available at GeneCards that lists all publications associated 
with a gene and provides their PubMed identifiers. The integration data schema 
is very complex because data and relationships must be integrated at different 
levels of the nested hierarchy. Geographical information systems address similar 
issues by representing maps at different granularities, encompassing a variety of 
information. 

Many systems have been developed to manage geographical and spatial data, 
medical data, and multimedia data. Refer to Spatial Databases--with Applica- 
tions to GIS [85], Neural Networks and Artifical Intelligence for Biomedical En- 
gineering, [86] and Principles of Multimedia Database Systems [87] for more 
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information. However, very little has been done to develop a system to integrate 
scientific multimedia systems seamlessly. The following section partially addresses 
the problem by focusing on relationships between scientific objects. 

Browsing Scientific Objects 
Scientific entities are related to each other. A gene comprises one or more sequences. 
A protein is the result of a transcription of dioxyribonucleic acid (DNA) into RNA 
followed by a translation. Sequences, genes, and proteins are related to reference 
publications. These relationships are often represented by links (and hyperlinks). 
For example, there is a relationship between an instance of a gene and instances 
of the set of sequences that comprise the gene. 

The attributes describing an entity, the relationship associating the entity to 
other entities, and most importantly, the semantics of the relationships, correspond 
to the complete functional characterization of an entity. Such a characterization, 
from multiple sources and representing multiple points of view, typically intro- 
duces discrepancies. Examples of such discrepancies include dissimilar concepts 
(GenBank is sequence-centric whereas GeneCards is gene-centric), dissimilar at- 
tribute names (the primary GeneCards site has an attribute p r o t e i n  whereas a 
mirror represents the same information as an attribute p roduc t ) ,  and dissimilar 
values or properties (the gene TP53 is linked to a single citation in the data source 
HUGO, 35 citations in the data source GDB, and two citations in the data source 
GeneCards). 

A BIS integrating multiple data sources should allow life scientists to browse 
the data over the links representing the relationships between scientific objects. 
A path is a sequence of classes, starting and ending at a class and intertwined 
with links. Two paths with identical starting and ending classes may be equivalent 
if they have the same semantics. The resolution of the equivalence of paths is 
also critical to developing efficient systems as discussed in Section 4.4.3. Semantic 
equivalence is a difficult problem, as illustrated in the following example. Consider 
a link from PubMed citations to sequences in GenBank. This link can be physically 
implemented in two different ways: (1) by extracting GenBank identifiers from the 
MEDLINE format of the PubMed citation, or (2) by capturing the Nucleotide 
Link  as implemented via the Entrez interface. Both implementations expect to 
capture all the GenBank identifiers relevant to a given PubMed citation. These 
two links have same starting and ending classes; however, they do not appear 
to be equivalent. Using the first implementation, the PubMed citation 8552191 
refers to four GenBank identifiers. In contrast, the Nucleotide Link representing 
the second property returns eight GenBank identifiers. Based on the dissimilar 
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cardinality of results (the number of returned sequences), the two properties are 
not identical. This can also be true for paths (informal sequences of links) between 
entities. To make the scenario more complex, there could be multiple alternate 
paths (links) between a start entity and an end entity implemented in completely 
different sources. 

A BIS able to exploit source capabilities and information on the semantics 
of the relationships between scientific objects would provide users the ability to 
browse scientific data in a transparent and intuitive way. 

4.6 CONCLUSION 

Traditional technology often does not meet the needs of life scientists. Each re- 
search laboratory uses significant manpower to adjust and customize as much as 
possible the available technology. Because of the failure of traditional approaches 
to support scientific discovery, life scientists have proven to be highly creative in 
developing their own tools and systems to meet their needs. Traditional database 
systems lack flexibility: Life scientists use flat files instead. Some of the tools and 
systems developed in scientific laboratories may not meet the expectations of com- 
puter scientists, but they perform and support thousands of life scientists. The de- 
velopment of BIS is driven by the needs of a community. But practice shows that 
the community now needs the development of systems that are more engineered 
than before, and computer scientists should be involved. 

There are good reasons for traditional technology to fail to meet the require- 
ments of BIS. Databases are data-driven and lack flexibility at the level of data 
representation. XML and other semi-structured approaches may offer this needed 
flexibility, but the development of native semi-structured systems still is in its in- 
fancy. Knowledge bases offer different semantic layers to leverage queries with 
the exploration process, but they should be coupled with databases to perform 
traditional data manipulation. On the other hand, agent architectures and grids 
provide flexible and transparent management of tools. Each of these approaches 
may and should contribute to the design of BIS. 

The systems presented in this book constitute the first generation of BIS. Each 
system addresses some of the requirements presented in Chapter 2. Each presented 
system still is successfully used by life scientists; however, the development of each 
of these systems told a lesson. To be successful, the design of the next generation 
of BIS should take advantage of these lessons and exploit and combine all existing 
approaches. 
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5 
CHAPTER 

S RS: An I nteg rati o n 
Platform for Databanks 
and Analysis Tools in 

Bioinformatics 

Thure Etzold, Howard Harris, and Simon Beaulah 

The Sequence Retrieval System (SRS) approach to data integration has evolved 
over many years to address the needs of researchers in the life sciences to query, 
retrieve, and analyze complex, ever increasing, and changing biological data. SRS 
follows a federation approach to data integration, leaving the underlying data 
sources in their original formats. For example, Genbank [1] is used in flat file 
format; the Genome Ontology (GO) [2] is used in either XML format or as re- 
lational tables stored in MySQL [3]. Databanks generated and provided by the 
major technologies available are integrated through meta-data, which is provided 
for the majority of the common public data sources. SRS customers use this func- 
tionality to integrate their own in-house data, such as gene expression databases, 
with third-party data such as Incyte LifeSeq Foundation data [4], and public data 
such as EMBL [5] and Swiss-Prot [6]. 

Databanks in SRS can be queried and analyzed via a Web interface or through 
a variety of application programming interfaces (APIs) as described in Section 5.8. 
Using one of a variety of query forms, the user can search a single or a combination 
of databanks. Search results can be further analyzed using a suite of tools like 
BLAST [7] and FASTA [8] for sequence similarity searching. SRS provides support 
for about 200 tools including a major part of EMBOSS [9]. This is further described 
in Section 5.7. 

Meta-data is at the heart of SRS. Each data source is fully described, including 
the type and structure of data, relationships to other data sources, how the data 
should be indexed or presented to users, and how it can be mapped to external 
object models. SRS uses a meta-data only approach, which is based on its inter- 
nal programming language, Icarus. Administrators can customize SRS by editing 
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Icarus files or through the use of a graphical user interface. No access programs 
or wrappers need to be written by programmers as they do with other integration 
systems like DiscoveryLink (Chapter 11) and Kleisli (Chapter 6). An exception 
is the set of syntactic and semantic rules that need to be composed for the inte- 
gration of flat file databanks. The result of the meta-data approach is a flexible 
and modular system that has adapted to all the changes and developments in 
bioinformatics over the past 10 years. Many approaches to data integration have 
been proposed over this time to address the needs described in this book, but SRS 
has surpassed them all to provide the only proven and widely used flexible data 
integration environment. 

SRS aims to remain independent of the technology used for data storage. 
Extensible markup language (XML), flat files, and relational databases bring 
with them a range of benefits and problems that often create a particular mind-set 
for the people who use and maintain them. Flat file databanks are the "dinosaurs" 
in this field, albeit very successful in defying extinction. Flat file data are compact 
and generally very flexible to work with. They are mostly semi-structured and are 
presented in a vast variety of formats, which in their multitude make parser writ- 
ing an almost impossible task. This is further described in Section 5.1. XML is an 
elegant way of representing data and is ideally suited for transferring information 
between tools and applications (e.g., communicating genomic data to a genome 
browser). XML offers great flexibility, which can present formidable challenges 
for integration. How SRS meets these challenges is described in Section 5.2. Rela- 
tional databases create a world of tables, columns, and relationships, providing a 
structured and maintainable data store. However, the Structured Query Language 
(SQL) is not a common skill of most researchers, and the scientific concepts re- 
searchers wish to analyze are often lost somewhere in the ever-growing database 
schema. For almost all relational databases in molecular biology, a bespoke inter- 
face had to be built. Section 5.3 covers this technology. SRS supports these three 
technologies (flat file, XML, and relational databases) and can map all data into 
flexible and extendable object models as described in Section 5.6. Using the object 
loader, users can define their own views of the data to display, for example, gene 
expression data with information from GenBank and from InterPro [10]. This type 
of view combines XML, relational, and flat file data seamlessly and is completely 
in the control of the user. Section 5.6 also describes how data can be exported as 
XML to other applications in a standard or customized way. 

Providing access to all data sources is only the first step of data integration. 
The relationships between the different data sources are represented in SRS and 
are used to form an interconnected set of data sources referred to as the SRS Uni- 

verse. Mapping of attributes and approaches to semantic integration is addressed 
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5.1 

FIGURE 

The SRS architecture. 

in Section 5.5. When a new data source is added to the SRS Universe, relationships 
to already integrated resources can be defined. This allows the SRS administrator 
and a domain expert to combine their knowledge to implement an SRS Universe 
that reflects the intricacies of their own data alongside a tried and tested public 
data SRS Universe. In this way, SRS provides the flexibility and extensibility that 
is required in a changing environment. 

Figure 5.1 gives an overview of the SRS architecture. It shows the three data 
source types: XML, relational, and flat file databanks. The output of analysis tools 
is treated in the same way as flat file databanks. SRS provides specific technology 
to deal with each data source type. For example, flat file databanks use the to- 
ken server, whereas relational databanks are integrated through object relational 
mapping and SQL generation modules. On top of these technologies are services 
such as the query service and the object loader. They can be applied to all data 
sources in a transparent way. The APIs can be used by programmers to make use 
of these services. The SRS Web server gives an example of such an application. 
Meta-data plays an important role in SRS. All data sources and analysis tools are 
fully described (e.g., file location, ftp source address, format) and all SRS modules 
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are configured through meta-data. A visual editor can be used to access, modify, 
and create all SRS meta-data. All of the components are described in this book, 
if only briefly. Unfortunately, the scope of this book does not allow a complete 
description of them all. 

The SRS server at the European Bioinformatics Institute (EBI) [11] has pro- 
vided genomic and related data to the European bioinformatics community since 
1994. It now serves more than 4 million hits per month, returning results in sec- 
onds, and supporting thousands of researchers. The EBI SRS server has approx- 
imately 200 data sources integrated with many analysis tools. It also links to an 
access page with other major academic SRS servers and gives access to the freely 
available SRS meta-definition files for (currently) more than 700 public databases 
(see also Krell and Etzold's article "Data banks" [12]). SRS is extensively used in 
large pharmaceutical and biotech companies and is the basis of the Celera Dis- 
covery System [13], Incyte LifeSeq Foundation distribution, Affymetrix NetAffyx 
portal [14], and Thomson Derwent Geneseq portal [15]. The SRS community of 
academic and commercial companies makes SRS the most widely used life science 
integration product. 

Note: Throughout this text the words databank, database, and library are 
used in a seemingly interchangeable way. To clarify, this database is used to refer 
to the sum of data and the actual system within which it is stored, databank to 
refer to the data only, and library to refer to the representation of a databank or 
database within SRS. 

5.1 I N T E G R A T I N G  F L A T  F ILE  D A T A B A N K S  

Before the advent of XML, almost all data collections in molecular biology were 
available as sets of text files, also called fiat file databanks. New databanks are now 
generally available in XML and, increasingly, flat file databanks can be obtained 
in an alternative XML format. However, flat files continue to be the only available 
form for many data collections and will stay an important source of information 
for years to come. 

Overall, flat file databanks have a simple structure and usually consist of a sin- 
gle stream of entries represented in a text format with a special syntax. The entries 
can be very rich, containing comprehensive information about a protein, a DNA 
sequence, or a tertiary 3D structure. The formats for these flat file databanks vary 
greatly and are only rarely shared. Once defined, individual formats will change 
continuously to reflect the growth of complexity in the associated content. Hun- 
dreds of these formats have been created, which makes parsing data in molecular 
biology a highly daunting task. SRS meets this challenge by providing tools that 
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make writing parsers easy and very maintainable. Parsers to disseminate flat file 
entries, or token servers, are written in Icarus, the internal programming language 
for SRS. 

5.1.1 The SRS Token Server 
SRS has a unique approach for parsing data sources that has proved effective for 
supporting many hundreds of different formats. With traditional approaches, a 
parser would be written as a program. This program would then be run over the 
data source and would return with a structure, such as a parse tree that contains 
the data items to be extracted from the source. In the context of structured data 
retrieval, the problem with that approach is that depending on the task (e.g., 
indexing or displaying) different information must be extracted from the input 
stream. For instance, for data display, the entire description field must be extracted, 
but to index the description field needs to be broken up into separate words. 

A new approach was devised called token server. A token server can be asso- 
ciated with a single entity of the input stream, such as a databank entry, and it 
responds to requests for individual tokens. Each token type is associated with a 
name (e.g., descriptionLine) that can be used within this request. The token server 
parses only upon request (lazy parsing), but it keeps all parsed tokens in a cache 
so repeated requests can be answered by a quick look-up into the cache. 

A token server must be fed with a list of syntactic and optionally semantic 
rules. The syntactic rules are organized in a hierarchic manner. For a given data- 
bank there is usually a rule to parse out the entire entry from the databank, rules 
to extract the data fields within that entry, and rules to process individual data 
fields. The parsed information can be extracted on each level as tokens (e.g., the 
entire entry, the data fields, and individual words within an individual data field). 
Semantic rules can transform the information in the flat file. For example, amino 
acid names in three-letter code can be translated to one-letter code or a particular 
deoxyribonucleic acid (DNA) mutation can be classified as a missense mutation. 

Figure 5.2 shows an example of how two different identifiers for protein 
mutations can be transformed into four different tokens using a combination of 
syntactic and semantic rules. 

The following example of Icarus code defines rules for the tokens AaChange, 
ProteinChangePos, and AaMutType for the first variation of the mutation key 

Leu3 9Arg. 

Key : 

AaChange : 

- {$Out Sin: Entry} in {$Wrt} ~ 

- {Sin:Key $0ut 

$code={ala:A arg:R asn:N asp:D 
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cys-C glu-E gln-Q gly-G 

his'H ile-I leu-L lys-K 

met-M phe-F pro-P ser-S 

thr-T try-W tyr-Y val-v} 

} 

aa {$aaSave = $Ct} num aa 

{ 

$aal : $code. ($aaSave.lower) 

$aa2 : $code. ($Ct.lower) 

$Wrt- [s- " ($aal) > ($aa2) " ] 

} 

ProteinChangePos. - {SIn'Key $Out} aa num {$Wrt} - 

AaMutType- - {$In.AaChange $Out} 

/[A-Z]>[A-Z]/{$Wrt- [s-substitution] } 

I/[i-Z]>\*/{$Wrt" [s-termination] } 

In- - /[ ̂ \n]*\n/ - 

aa- - /[a-Z]+/ - 

num- - /[0-9]+/ - 

The rules are specified in Icarus, the internal programming language of SRS. 
Icarus is in many respects similar to Perl [16]. It is interpreted and object-oriented 
with a rich set of functionality. Icarus extends Perl with its ability to define formal 
rule sets for parsing. Within SRS it is also used extensively to define and manipulate 
the SRS meta-data. 

5.2 

FIGURE 

The SRS token server applied on mutation identifiers. 
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The previous code example contains seven rule definitions. Each starts with 
a name, followed by a colon and then the actual rule, which is enclosed within 

characters. These rules are specified in a variant of the Extended Backus Naur 
Form (EBNF) [17] and contain symbols such as literals, regular expressions (de- 
limited by / characters), and references to other rules. In addition they can have 
commands (delimited by { and } ), which are applied either after the match of the 
entire rule (command at the beginning of the rule) or after matching a symbol 
(command directly after the symbol). In the example three different functions are 
called within commands. $ In  specifies the input tokens to which the rule can be 
applied. For example, AaChange specifies as input the token table Key, which is 
produced by the rule Key. $Out specifies that the rule will create a token table 
with the current rule. The command SWrt writes a string into the token table 
opened by the current rule. For example, the SWrt command following the refer- 
ence to the in  rule in the rule Key will write the line matched by i n  into the token 
table Key. Using commands $ In  and $ou t ,  rules can be chained by feeding each 
other with the output token tables they produce. For example, rule AaChange 
processes the tokens in token table Key and provides the input for rule AaMut- 
Type. Lazy parsing means that only the rules necessary to produce a token table 
will be activated. To retrieve the Key tokens, the rules Key and E n t r y  need to 
be processed. To obtain AaMutType, the rules AaMutType, AaChange, Key, 
and E n t r y  are invoked. Production AaChange uses an associative list to convert 
three-letter amino acid codes to their one-letter equivalents. AaMutType is a se- 
mantic rule that uses standard mutation descriptions provided by AaChange to 
determine whether a mutation is a simple substitution or leads to termination of 
the translation frame by introducing a stop codon. 

Advantages of the token server approach are: 

�9 It is easy to write a parser where the overall complexity can be divided into 
layers: entry, fields, and individual field contents. 

�9 The parser is very robust; a problem parsing a particular data field will not 
break the overall parsing process. 

�9 A rule set consists of simple rules that can be easily maintained. 

�9 Lazy parsing allows adding rules that will only be used in special circumstances 
or by only a few individuals. 

�9 Lazy parsing allows alternative ways of parsing to be specified (e.g., retrieval of 
author names as encoded in the databank or converted to a standard format). 

�9 The parser can perform reformatting tasks on the output (e.g., insertion of 
hypertext links). 
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5.1.2 Subentry Libraries 
Flat file databanks are often described as being semi-structured. This stems from 
the lack of a formal description of the contents, which may just be mentioned 
briefly in a readme file or user manual. While individual entries in a flat file 
databank describe a real world object such as a gene or protein, it is often possible 
to discover entities within these entries that are worth querying and retrieving as 
independent entities. 

Consider a nucleotide sequence entry in EMBL or GenBank that describes an 
entire genome, or a large part of it, encoding hundreds of genes. It contains for 
every gene, or coding sequence, a sub-entity, or sub-entry, which can look like the 
one shown in Figure 5.3. 

With SRS these sub-entries can be parsed, indexed, and retrieved as separate 
entities. There is still a tight association to the parent entry, but a separate databank 
of sub-entries is created effectively next to the databank of parent entries. Sequence 
features have a special property in that they are contained within the sequence 
of the parent entry. The exact location of that sequence can be specified in the 
sub-entry as shown in Figure 5.3 as a complex join statement following the CDS 
keyword. SRS uses this information to retrieve the sub-sequence of the sequence 
feature as part of the sub-entry. 

Many other flat file libraries have sub-entries (e.g., literature citations and 
comments). In addition, sequence feature tables of the sequence databanks are 
parsed to produce a new sub-entry type counter, which is a list of counts of each 
feature type within an entry. Indexing these allows the scientist to make highly 
specific queries such as "all Swiss-Prot entries with exactly seven trans-membrane 
segments." 

5.2 INTEGRATION OF XML DATABASES 

XML is becoming increasingly important within the bioinformatics community. 
There are several good reasons for using XML as a medium for the storage and 
transmission of bioinformatics data. 

�9 Because XML has a universally recognized format built on a stable foundation 
[18], it has become the primary means of exchanging information over the 
Internet. 

�9 A variety of tools make it relatively easy to manage XML data and transform 
it into other formats (e.g., an extensible stylesheet language transformation 
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FIGURE 

FT CDS 

FT 

FT 

FT 

FT 

FT 

FT 

FT 

FT 

FT 

FT 

FT 

FT 

FT 

FT 

FT 

FT 

FT 

FT 

FT 

FT 

join(12151..12199,12319..12483,26154..26312,26771..27004, 

28068..28415,29142..29342,30433..30554,30859..30926, 

31311..31341) 

/codon start=l 

/dbxref="SWISS-PROT:P01730" 

/note="major receptor for HIV-I; member of immunoglobulin 

supergene family; T cell surface glycoprotein T4" 

/gene="CD4" 

/function="T-cell coreceptor; involved in antigen 

recognition; participant in signal transduction pathway" 

/product="surface antigen CD4" 

/protein_id="AAB51309.1" 

/translation="MNRGVPFRHLLLVLQLALLPAATQGKKVVLGKKGDTVELTCTASQ 

KKSIQFHWKNSNQIKILGNQGSFLTKGPSKLNDRADSRRSLWDQGNFPLIIKNLKIEDS 

DTYICEVEDQKEEVQLLVFGLTANSDTHLLQGQSLTLTLESPPGSSPSVQCRSPRGKNI 

QGGKTLSVSQLELQDSGTWTCTVLQNQKKVEFKIDIVVLAFQKASSIVYKKEGEQVEFS 

FPLAFTVEKLTGSGELWWQAERASSSKSWITFDLKNKEVSVKRVTQDPKLQMGKKLPLH 

LTLPQALPQYAGSGNLTLALEAKTGKLHQEVNLVVMRATQLQKNLTCEVWGPTSPKLML 

SLKLENKEAKVSKREKAVWVLNPEAGMWQCLLSDSGQVLLESNIKVLPTWSTPVQPMAL 

IVLGGVAGLLLFIGLGIFFCVRCRHRRRQAERMSQIKRLLSEKKTCQCPHRFQKTCSPI 

A Protein Coding Sequence (CDS) Feature in EMBL. 

(XSLT) [19] style sheet may be used to transform XML data to hypertext 
markup language (HTML) format for display in a Web browser). 

�9 By allowing users to create their own syntax (element and attribute names) and 
structure (hierarchical parent-child relationships between elements), XML 
gives database designers great freedom to transform their mental models of 
an information system into a concrete form. 

However, people conceptualize information in very different ways, particu- 
larly in a complex field like bioinformatics. This makes it difficult, if not impossible, 
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to create widely accepted XML standards for bioinformatics data. Furthermore, 
different organizations are interested in different aspects and constellations of the 
bioinformatics data universe, which includes DNA sequences, proteins, structures, 
expressed sequence tags (ESTs), transcripts, metabolic pathways, patents, muta- 
tions, publications, and so forth. If all of these data types were incorporated into 
a single format, it would be extremely complex and unwieldy. 

For these reasons, many companies and organizations have given up the quest 
for a universal XML standard for bioinformatics data. Instead, they have created 
their own standards, which are often customized versions of existing standards, 
optimized for use in internal applications. SRS has remained neutral in the stan- 
dards war by striving to develop flexible tools that support all the existing and 
emerging bioinformatics XML formats. 

5.2.1 What Makes XML Unique? 
Data formatting in XML is similar to data formatting in flat files. Figure 5.4 shows 
how the EMBL flat file data in Figure 5.3 might appear if rendered in XML format. 
The key features that make XML formats different from flat file formats are as 
follows. Figure 5.4 illustrates both types of data encapsulation (the only piece of 
data expressed as an attribute value is the feature ID, CDS). 

1. XML uses two distinct kinds of tags for wrapping data: elements and at- 
tributes. There is no hard-and-fast rule for what kinds of data should be 
encapsulated in attributes rather than in elements. In general, attributes tend 
to be used for short pieces of data that have a one-to-one relationship with 
the data in the parent element, such as IDs and classifications. 

2. There are two types of syntax that can be used for XML elements. 

a. Normal syntax encloses the data belonging to an element between a start 
tag (e.g.,<j oin>) and an end tag (e.g., < / j o i n > ) .  

b. Empty syntax may be used for elements that either have no data content 
or have content that may be stored efficiently in attribute values. The 
InterPro format created by the EBI uses empty d b _ x r e f  elements for 
specifying references to external databases: 

<db_xref db=" EC" dbkey= "2.7.4.9"/> 

3. Some XML elements (e.g.,feature_list) are used as structural components 
that define hierarchical relationships between other elements but contain no 
data of their own. 
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5.4 

FIGURE 

<feature list> 

<feature id="CDS"> 

<join>(12151..12199,12319..12483,26154..26312,26771..27004,28068..28415, 

29142..29342,30433..30554,30859..30926,31311..31341)</join> 

<codon_start>l</codon_start> 

<db xref>SWISS-PROT:P01730</db xref> 

<note>major receptor for HIV-I; member of immunoglobulin supergene family; 

T cell surface glycoprotein T4</note> 

<gene>CD4</gene> 

<function>T-cell coreceptor; involved in antigen recognition; 

participant in signal transduction pathway</function> 

<product>surface antigen CD4</product> 

<protein_id>AAB51309.1</protein_id> 

<translation>MNRGVPFRHLLLVLQLALLPAATQGKKVVLGKKGDTVELTCTASQ 

KKSIQFHWKNSNQIKILGNQGSFLTKGPSKLNDRADSRRSLWDQGNFPLIIKNLKIEDS 

IVLGGVAGLLLFIGLGIFFCVRCRHRRRQAERMSQIKRLLSEKKTCQCPHRFQKTCSPI 

</translation> 

</feature> 

</feature list> 

EMBL flat file data rendered as XML. 

4. Empty elements may be used as structure-only elements to delimit entries (or 
sub-entries). To support both normal and empty element entry delimiters, the 
SRS XML parser must have two different types of behavior. 

a. For entries delimited by start and end tags, entry processing terminates 
when the end tag is found. 

b. For entries delimited by empty element tags, there is no end tag, so entry 
processing terminates when the start tag of the next entry is found or 
when the end of the file is reached. 

5. XML allows users to define shorthand expressions to represent commonly 
used strings. These expressions are called general entities. For example, the 
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entity &spdb; could stand for the name of a database (e.g., SwissProt- 
Release). When an XML parser encounters a general entity reference like 
&spdb; in an attribute value or element content, it must replace the reference 
with the replacement text. 

6. Some commonly used characters have special meaning in XML. 

a. Less thans [<] and greater thans [>] are used in markup tags. 

b. Apostrophes [ ']  and quotation marks ["] are used to delimit attribute 
values. 

c. Ampersands [&] are used to specify general entity references. 
If these characters occur within XML attribute values or element content, 
they can create ambiguities for an XML parser, so they must be handled 
with care. 

7. XML data may also be encapsulated in CDATA sections that may appear 
wherever character data may appear. Inside CDATA sections, less thans and 
ampersands are treated as literals (i.e., they do not need to be replaced with 
entity references). 

5.2.2 How Are XML Databanks Integrated into SRS? 
XML is fully integrated into the SRS universe of databanks, and it is relatively 
easy to incorporate XML libraries into an SRS installation. The only prerequisite 
is a document type definition (DTD) that accurately describes the structure of the 
XML. If a DTD does not exist, a utility such as Michael Kay's DTDGenerator 
[20] can be used to create one. 

The first step in the configuration process is to run an SRS utility, which 
analyzes the DTD and creates templates for all the meta-data objects needed to 
define the new library. The user must then edit the resulting object definitions. 
Initially, the user must supply all of the extra information needed to perform the 
basic indexing and loading tasks. The next step is to register the new databank 
with SRS and index the library. Once the library has been indexed, all the standard 
library operations become available. 

If the new XML library contains sub-entry libraries or takes advantage of any 
special indexing or loading features, the administrator must perform additional 
editing to define the sub-entry libraries or to activate these features. Integrating 
an XML library into SRS is easier than integrating a flat file library because SRS 
does most of the work of creating the library meta-information. Also, the use of 
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a built-in generic XML parser eliminates the need for writing a library-specific 
parser. 

Overview of XML Support Features 
Support for Complex DTDs 
A DTD is a set of declarations that defines the syntax and structure of a particu- 
lar class of XML documents. DTDs may consist of an internal subset (inside an 
XML document) and/or any number of external subsets in separate files. External 
subsets may be invoked recursively from within other external subsets. DTDs may 
also incorporate INCLUDE and IGNORE blocks (conditional sections)containing 
different sets of declarations to be used in different applications, and these blocks 
may be activated or deactivated using variables called parameter entities. Thus, 
DTDs can be quite complex. 

The SRS utility used to parse DTD files employs a sophisticated algorithm to 
process external DTDs recursively in accordance with the guidelines laid down in 
the World Wide Web Consortium's XML Version 1.0 Recommendation [18]. This 
ensures that if a DTD includes multiple declarations of the same general entity 
or default attribute value, the correct values are used in generating the SRS meta- 
information. The utility also supports the use of parameter entities and correctly 
processes conditional sections. 

Support for Indexing and Querying 
SRS provides several powerful features to give users control over the way XML 
data is indexed and queried. Micro-parsing allows users to pre-process data be- 
fore it is written to an index field. For example, suppose the data contains an 
author element that uses initials-first formatting (e.g., < a u g h o r > J .  K. Rowl-  
i n g < / a u t h o r > ) ,  but the user would like to index this in initials-last format (e.g., 
Rowling, J. K.). The indexing metaphor for the a u t h o r  element would refer to an 
Icarus syntax file containing a production to transform the data. Micro-parsing 
allows users to apply the same types of syntactic and semantic rules used for flat 
file parsing to the contents of individual XML tags. 

Splitting allows users to subdivide input data strings containing lists into their 
component index values. For example, suppose the data contains an authors ele- 
ment containing a list of author names separated by commas and white space (e.g., 
<authors>J. K. Rowling, William Shakespeare, Stephen King 
</authors>), but the user would like to index this list as three separate author 
names. The indexing metaphor for the authors element would include a s p l i t  
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attribute (e.g., s p l i t : [ ,  ]) specifying a regular expression containing a list of 
the characters used to separate individual items in the list. 

Conditional indexing allows users to process meta-data specified within the 
XML stream. For example, the Bioinformatic Sequence Markup Language 
(BSML) format [21] uses an XML element called A t t r i b u t e  as a container for 
three different types of data: version, source, and organism. The name attribute 
is a meta-data field that identifies the type of data contained in the associated 
content attribute. 

<Attribute name="version" content="AB003468.1 GI-2656021"/> 
<Attribute name="source" content="Cloning vector pAP3neo DNA."/> 
<Attribute name="organism" content="Cloning vector pAP3neo"/> 

Conditional indexing may be used to channel the data contained in the three con-  
t e n t  attributes into three separate index fields designed to hold version, source, 
and organism data. 

SRS provides solid support for indexing and querying subentry libraries. In 
some XML formats, a single type of element is used in more than one sub-entry 
library, and the element may have a different meaning in each library. To index 
the data contained in these elements into the correct set of target index fields, 
SRS allows users to create separate fields and indexing metaphors for each unique 
instance of the element. The indexing metaphors use a special p a t h  attribute to 
determine which sub-entry library the element currently being processed belongs 
to so that the data can be indexed into the correct field. Conversely, SRS also 
allows users to index data from a single element or attribute into multiple index 
fields. 

5.2.4 How Does SRS Meet the Challenges of XML? 
Problems with managing XML data can be divided into two main categories: 
syntactical/semantic (microscopic) and structural (macroscopic). Data formatting 
varies widely between standard XML formats, and pre-processing is often re- 
quired before data can be indexed or loaded. Table 5.1 describes several common 
syntactical problems and explains how SRS solves them. 

XML formats, like flat file formats, can be large, complex, and unwieldy, mak- 
ing data access difficult and inefficient. Table 5.2 describes several common struc- 
tural problems that occur in XML formats used in bioinformatics. SRS provides 
solutions to some of these problems, but some can only be solved by restructuring 
the data. 
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Problem SRS Solution 

Fields may include special characters (e.g., 

colons, square brackets, dashes, and asterisks) 

that can interfere with SRS query syntax. 

Fields may contain data whose type depends on 

the value of another (recta-data) field. 

Fields may contain characters that require 

special handling in XML (e.g., less thans, 

greater thans, apostrophes, quotation marks, 

and ampersands). 

Entity references (both pre-defined and user- 

defined) must be replaced before data is in- 

dexed or loaded. Entity references may include 

markup. 

A single element may be used in two or more 

subentry libraries to contain different types of 

information. 

Mixed content elements are difficult to parse 

because content belonging to the parent ele- 

ment is interspersed with content belonging to 

child elements. 

Fields may contain lists of values that must be 

separated into individual values. 

Use micro-parsing to purify data fields dur- 

ing indexing. 

Use conditional indexing to index data into 

different fields based on the value in a con- 

dition (meta-data) field. 

Use micro-parsing to replace problematic 

characters with pre-defined character entity 

references. 

SRS provides sophisticated entity replace- 

ment functionality. 

Users can create separate fields and indexing 

metaphors for each instance of an element 

used in a different subentry library. The in- 

dexing metaphors use a p a t h  attribute to 

index the correct data into the correct fields. 

SRS provides two special loading comm- 

ands (xsl : copy-of and xsl :value-of) 

that emulate useful features found in the ex- 

tensible stylesheet language transformations 

(XSLT) language [19]. 

Indexing metaphors can include a s p l i t  

attribute to split a string into sub-strings us- 

ing a set of separator characters contained 

in a regular expression. 

5.1 

TABLE 

Syntactical  p rob lems  and  SRS solut ions.  
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Problem SRS Solution 

Some libraries use large numbers of structure- 

only tags. Tags can take up a lot of disk space 

without providing much useful information. 

Excessive numbers of tags make a format diffi- 

cult to understand and manage. 

Deep nesting and large numbers of sub-entries 

slow down querying and loading performance. 

Content belonging to a single entity may be 

spread across multiple files. 

A single entity may appear repeatedly in multi- 

ple files. 

Excessive data redundancy slows down 

performance. 

No solution; inherent in XML. 

The SRS utility that generates library defini- 

tion files uses intelligent parsing to eliminate 

structure-only elements from the set of meta- 

data objects that are included in the library 

definition file. 

The SRS loading algorithm builds a docu- 

ment object model (DOM) object for each 

entry. This approach provides both optimal 

performance and highly reliable handling 

of sub-entries. It also provides some spe- 

cial loading commands that improve perfor- 

mance for particular types of loading tasks. 

No solution; inherent in certain XML for- 

mats. Data should be restructured. 

No solution; inherent in certain XML for- 

mats. Data should be restructured. 

No solution; inherent in certain XML for- 

mats. Data should be restructured. 

5.2 

TABLE 

Structural problems and SRS solutions. 

5.3 INTEGRATING RELATIONAL DATABASES 

5.3.1 Whole Schema Integration 
For  re la t ional  da tabases ,  a schema organizes  the da ta  defining the da ta  entities and  

their  re la t ionships  to each other. Because indiv idual  entities can only be mode l ed  

as flat tables, real wor ld  concepts  such as genes or  metabo l ic  p a t h w a y s  of ten use 

m a n y  tables to store the i n fo rma t ion  faithfully. Conversely,  to m a k e  full use of 
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this data, the whole schema needs to be made available to the user. The user must 
be able to query one or more tables and then collect the necessary data from all 
related tables. For example, in a relational database storing genes, the user may 
query the author table for Lee, which will return the set of genes published by the 
author Lee. Behind the scenes the results from the query in the author table need 
to be related to other data (e.g., accession code, keyword, references, sequence), 
which is stored in other tables. The data is represented as a whole and must be 
assembled from many different tables before it is presented to the user. 

The problem of mapping a table structure into a more complex object structure 
has been addressed before by object relational mapping techniques. Traditional 
approaches start with a class description of the objects to be stored and then 
generate the relational schema from the class information. This is in conflict with 
the SRS approach of integrating existing schemas where often an object model has 
not yet been defined. The overwhelming majority of the schemas relevant to life 
science informatics (LSI) have been obtained by more traditional methods, such 
as entity-relationship (ER) modeling, and not by object-relational modeling. 

The SRS approach is to use a semi-automated process to define object- 
relational mapping on top of an existing schema. This is achieved by selecting a 
table manually to be the hub table, or the table containing values equivalent to an 
object ID (usually an accession number or unique ID), and other tables that can be 
defined to belong to the object. Using the hub table, the selection of tables, and for- 
eign key relationships, SRS can automatically create an object model, which is in- 
troduced to the system as a dynamic type. The resulting object can then be queried 
and retrieved as a fixed entity, much like an entry in a flat file or XML databank. 

When a relational databank is integrated, no indexing on the SRS side needs 
to be done. SRS will generate SQL statements for querying and retrieval of objects 
that will emulate the same behavior as users expect when dealing with flat file and 
XML databanks. 

Capturing the Relational Schema 
SRS Relational includes a Java program, schemaXML, which uses a standard Java 
Database Connectivity (JDBC) [22] interface to capture the relational database 
schema, including all the tables, columns, keys, and foreign key relationships. The 
program schemaXML passes this information to SRS providing the base informa- 
tion to integrate the relational databank. All further meta-data for customization 
can be added by editing this schema information using a graphical interface or 
by direct manipulation of Icarus files. This provides a much simpler solution than 
would be required by writing individual integration programs for each relational 
databank to be integrated. If the schema changes the program, schemaXML just 
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needs to be re-run and the edits reapplied. A tool is being developed that reapplies 
edits to an updated version of the original schema definition. 

Selecting a Hub Table 

SRS Relational is based on the concept of hub tables, which are used, conceptually, 
to relate relational database tables to data objects. Hub tables are central points 
of interest in a relational schema and must contain a unique name (typically a 
primary key) that can be used as an entry ID (e.g., an accession code in a sequence 
database). Using foreign key relationships, all data held in surrounding tables can 
be linked directly or indirectly back to the hub table and entry ID using table joins. 
All tables that belong to a hub table must be directly or indirectly linked with it. In 
cases where these links are not apparent from the schema information retrieved by 
schemaT~L, they can be set manually within the visual administration interface. 

Figure 5.5 shows a section of the relational schema that is used to maintain the 
GO databank in the MySQL relational database management system (RDBMS). 

5.5 

FIGURE 

Visual representation of part of the GO term schema within the SRS Visual Admin- 
istration Tool. The table te rm is selected as a hub table. Individual lines between 
the tables represent foreign key relationships. 
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The term table is clearly the central point of interest in the schema with related 
tables surrounding it. It would be selected by the SRS administrator as a hub 
table for use in SRS. In other databases, the hub table selection may be less clear. 
For example, a Laboratory Information Management System (LIMS) database 
has many concepts such as sample, project, and experiment, each with its own 
collection of related tables. In these cases, multiple hub tables can be selected and 
associated to separate SRS libraries by the SRS administrator. 

Generation of SQL 
SRS sees the relational schema as a graph with tables as nodes and foreign key 
relationships as edges. The hub table is at the center of this graph. An idealized 
form of such a graph is shown in Figure 5.6. To translate an SRS query into SQL 
it maps the predicates to the appropriate columns and then to tables in the graph, 
and a shortest path is derived to relate these predicate queries to rows in the hub 
table using joins. An example is shown for three predicates in Figure 5.6 (A), which 
are all linked to the hub table. The SQL query will return a number of rows in the 
hub table, which are processed to create a list of entry IDs. To retrieve particular 
entries, a search path is again used, this time radiating out from the hub table and 
including the required tables using joins. See Figure 5.6 (B). 

5.6 Hub table data access. 

FIGURE 
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5.3.5 Restricting Access to Parts of the Schema 
Once the relational schema held on the SRS side has been configured to define a 
library, it can be further modified to restrict or allow access to the tables within the 
schema. Individual tables can be hidden from SRS so general access to the data is 
not available. In addition, the SRS access permissions can also be used to control 
access to the whole or sections of the schema (when using multiple hub tables). It 
is also possible to modify, add, and remove links between tables without altering 
the original database schema. 

5.3.6 

5.3.7 

Query Performance to Relational Databases 
During the development and use of SRS Relational a number of performance 
optimizations have been added. A few of these are outlined as follows. 

�9 SRS is case insensitive, and it is well known that case insensitive queries in 
relational databases can be expensive. Therefore, if all the values in a column 
are known to be in the same case, this can be indicated within the meta- 
description of the schema and used to reduce the querying time significantly. 

�9 When required to do many table joins with One-to-Many (I:N) relationships 
within a single SQL query, the creation of the result table will suffer from 
combinatorial explosion. The definition of a table link contains a junction 
option, which, if turned on, will generate multiple small queries that can be run 
simultaneously and joined externally. This provides significant performance 
improvements for the object assembly process. 

�9 For text and pattern searches it is possible to make use of text indices produced 
by the relational database. This results in much faster searches for text-based 
queries, such as keywords or author name. 

�9 All query results are cached in a user-owned space. This is inexpensive because 
the query result is represented as a simple list of entry IDs. To repeat a query, it 
can be looked up in the cache and retrieved. The cache speeds up reinspection 
of queries, combining them with other queries, or displaying individual chunks 
of the result list in a Web interface. 

Viewing Entries from a Relational Databank 
As mentioned previously, the selection of a hub table and associated tables is used 
to build an object model automatically. The resulting object can be displayed as 
an XML stream, which is, however, inconvenient for the user. One option for 
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presenting the object in a human, readable form is to apply XSLT to the XML 
output. Another more convenient one is to use the mechanism SRS provides to 
present objects to the Web by a layout description. Section 5.6 will describe how 
data from relational databanks can be combined with data from flat file or XML 
databanks into a single data structure. 

Summary 
Consistent with the SRS philosophy, relational databanks can be added through 
a meta-data only approach. With the exception of defining the HTML represen- 
tation of the entry data, the entire process of creating and editing the meta-data 
can be done through mouse clicks in the visual administration interface of SRS. 

Not all the options in the configuration have been described here, including 
setting up sub-entry libraries, automatic handling of binary data (such as images 
and Microsoft Office documents), and table cloning to handle recursive and con- 
ditional relationships between tables. 

SRS uses a simple interface class to interact with the relational systems. For 
speed and efficiency the C/C++ interfaces are preferred over JDBC. At present the 
following Relational Database Management Systems (RDBMS) are supported: 

�9 Oracle [23] 

�9 MySQL [24] 

�9 Microsoft SQLServer [25] 

�9 DB2 [26] 

Relational databanks offer a lot of functionality, which needs to be matched by any 
system that mediates access to them. The meta-data approach of SRS Relational 
has proven to provide the flexibility to cope with new user requirements to exploit 
this functionality. 

5.4 
~ i  ~ � 8 4  . . . . .  . . . .  

THE SRS QUERY LANGUAGE 

SRS has its own query language. It supports string comparison including wildcards 
or regular expressions, numeric range queries, Boolean operators, and the unique 
link operators (see Section 5.5). Queries always return sets of entries or lists of entry 
IDs. Sets obtained by querying all databanks can be sorted using various criteria. 
The query language has no provision to specify sorting. Instead it is invoked using 
a method of the result set object that has been obtained by evaluating a query. 
To extract information from entries of result sets, further methods are available. 
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These methods can retrieve the entire entry as a text or XML stream, retrieve 
individual token or field values, or load entries into data structures using pre- 
defined object loaders (see Section 5.6). 

SRS Fields 

A query predicate must refer to an SRS field, which has been assigned to the fields 
in the databank before query time. A query into the Swiss-Prot d e s c r i p t i o n  
field with the the word "kinase" looks as follows in the SRS query language: 

[ swissprot-description- kinase ] 

This denotes a string search enclosed in [ and ]. The databank name s w i s s p r o t  
is followed by the field name d e s c r i p t i o n .  The search term k i n a s e  follows the 
delimiter :. Because the d e s c r i p t i o n  field is shared with the databank EMBL, 
the query can be extended to search both Swiss-Prot and EMBL, which then have 
to be enclosed in curly braces: 

[{swissprot embl}-description:kinase] 

Importantly, SRS fields are entities outside a given library definition, which must 
be mapped onto each field in a library. Whenever possible, the same SRS field is 
mapped to equivalent fields in different libraries. Through that mechanism each 
SRS library has a list of associated SRS fields that can be used for searching. When- 
ever the user selects multiple libraries for searching at the same time, it is possible 
to find out all the SRS fields that these have in common and represent them in 
a query form. SRS fields are an important mechanism to integrate heterogeneous 
databanks with different, but overlapping, content, and they also provide an im- 
portant simplification because no knowledge of the internal structure of a given 
databank is required when retrieving and using the list of SRS fields. 

A special SRS field exists with the name i l  1Text .  It is shared by all databanks 
and refers to all the text fields in all databanks. Through the use of this field, full- 
text queries can be specified. 

5.5 LI N KI N G DATABAN KS 

A common theme in databanks in molecular biology is that they all have explicit 
cross-references to other databanks. Especially now, in the postgenomic era in 
which many known proteins can be linked to a genome location and where results 
from gene expression and proteomics experiments can be used to understand how 
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these proteins are regulated within the cell, individual data items have very limited 
value if they are not connected to other databanks. SRS supports and makes use 
of explicit cross-references in three ways: 

�9 Hypertext links 

�9 Indexed links 

�9 Composite structures (see Section 5.6) 

Hypertext links are the simplest mechanism and are ubiquitous on the Web. 
They are inserted into the appropriate places when displaying information to the 
user. Linking in this form can be operated on single entries and is very convenient 
and easy to understand. These links are easy to set up for an SRS Web server. 
Definitions can be shared among libraries and include options like displaying a 
link only if it contains a valid reference to an existing entry. 

More powerful is the use of indexed links. A simple example of a query using 
indexed links is "give me all entries in Swiss-Prot that are linked to EMBL." SRS 
has a general capability to index links based on explicit or even implicit cross- 
reference information. Link indices are built using information from one side 
only. All links, once indexed, become bi-directional. An SRS server with many 
libraries and links can be seen as a graph where nodes are libraries and the edges 
are the links between them. Figure 5.7 shows such a graph for a comparatively 
small installation. 

In this graph it is possible to link databanks that are not directly connected. 
For any pair of databanks, the shortest route can be determined and carried out 
by a multi-step linking process. SRS knows the topology of a given installation 
and can therefore always determine and execute this shortest path. If the shortest 
path is not what is desired, this can be specified explicitly within an SRS query 
language statement. 

Constructing Links 
Links can be constructed by identifying two SRS fields (see Section 5.4), each 
from one of the two SRS libraries to be linked that contain identical field val- 
ues. For instance, to create a link between Swiss-Prot and EMBL, you would 
select the accession field from EMBL and the data reference (DR) field from 
Swiss-Prot with explicit cross-references to other databanks. Another example 
is to link Swiss-Prot and Enzyme [27], which can be defined by the ID field 
from Enzyme and the description field of Swiss-Prot. The description field of 
Swiss-Prot carries one or more Enzyme IDs if the protein in question is known 
to have an enzymatic function. For flat file and XML databanks, link indices 
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FIGURE 

An SRS library network. 

must be built to make the link queryable. Indices can be built by comparing 
existing indices or by parsing the databank defined to contain the cross-reference 
information. 

Links between and from relational databanks are defined in the same way. 
However, no indices need to be built. A link query can be executed by querying 
the information provided in the table structure. 

5.5.2 The Link Operators 
Link operators are unique to the SRS query language. The two link operators, 
< and >, allow sets of data from different databanks to be combined. Figure 5.8 
shows two databanks, A and B, in which some entries in A have cross-references 
to entries in B. These cross-references are processed to build link indices, which 
provide the basis for the link operation. Figure 5.8 also shows the results of two 
link queries between sets A and B, using the operators < and >. 
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FIGURE 

List all the entries in set B 
that have links with set A. 

The SRS link operators. 

List all the entries in set A 
that have links with set B. 

By combining predicate queries with link operators it is possible to perform 
complicated cross-databank queries such as "retrieve all proteins in Swiss-Prot 
with calcium binding sites for which their tertiary structure is known with a res- 
olution better than 2 Angstrom." 

Another important use of the link operator is to convert sub-entries (e.g., 
sequence features) into entries and vice versa. With this link it is possible to search 
in EMBL all human CDS features (i.e., all sequence features describing coding 
sequences or all human DNA sequences that have CDS features). 

5.6 THE OBJECT LOADER 

The SRS object loader is a technology originally designed to transform semi- 
structured text data into well-defined data structures that can be accessed in 
a programmatic way. The object loader processes data according to a loader 
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specification, or a class definition, which, for all of its attributes, specifies how 
it can obtained from the text file. 

The following example shows such a loader for the example of the mutation 
data in Figure 5.2. 

$LoadClass: [Mutation attrs: { 
$LoadAttr: [mutation load: $Tok:AaChange] 
$LoadAttr: [position type:int load:$Tok:AaChangePos] 
$LoadAttr: [aaMutType load: $Tok:AaMutType] 
$LoadAttr : [ rnaMutType load: $Tok : RnaMutType ] 

This definition needs no information on how the required information is to 
be parsed out of the flat file. Only the name of the token is needed to make the 
association. 

The object loader has been extended to support, in addition to flat file data- 
banks, XML and relational databanks. A variety of ways have been added to 
specify the origin of the original data to be loaded. This includes using the SRS 
field abstraction, an XPath-like syntax for XML files (XPath is the XML Path lan- 
guage used for addressing parts of an XML document) [28] or pairs of table and 
row names for relational databanks. A single loader can be defined for a broad 
range of databanks. For example, a single sequence loader can be specified for 
all databanks with sequence information, and the original format can be flat file, 
XML, or relational. 

In Section 5.8 an example is described for accessing the loaded objects within 
a client program. 

Creating Complex and Nested Objects 
The loader specification supports other useful features, such as class inheritance, 
and supports various value types like string, integer, and real values and various 
types of lists. 

Using token indices (TINs), a feature of the token server that allows iteration 
over lists of complex structures inside a text entry, object classes can be nested to an 
arbitrary degree. Object loaders can build a structure to reflect the entry subentry 
structure used for indexing, but can have deeper levels of nesting. A good example 
is an EMBL entry, which contains a list of sequence feature objects, each of which 
contains a list of qualifier value and name pairs (see Figure 5.3 for an example of 
an EMBL sequence feature). 
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FIGURE 

Support for Loading from XML Databanks 
SRS provides several features to give users control over loading from XML data- 
banks. The utility that generates library definition files from an XML document 
type definition can generate two types of loaders, a fiat loader based on the tradi- 
tional main library/sub-entry library structure or a special structured loader, which 
is a collection of separate loaders for each element that mimics the tree structure 
of the original XML document. The structured loader makes it easier to load data 
from libraries that are heavily nested, and it is particularly useful for tasks like 
writing SRS page layout modules for HTML display. 

SRS provides special support for random access of sub-entities within XML 
files (e.g., individual entries, sub-entries, fields, or collections of fields) or for load- 
ing high-level structures without some of the data nested within them (e.g., main 
entries without sub-entries). In addition, SRS offers two access mechanisms that 
mimic functionality available in XSLT. Figure 5.9 shows a mixed content element 
called p r o l  og that has child elements c h i  l d _ l  and c h i  ld_2 interspersed with 
its content. 

The x s l - v a l u e - o f  functionality allows users to extract and concatenate 
all of the character data content of the p r o  1 og element and its child elements. A 
field loaded using the xs  1- v a l u e - o  f keyword word would contain the following 
text: "To be, or not to be, that is the question." Note that none of the attribute 
values are included. The xs  1- c o p y - o  f functionality allows users to extract XML 
tree fragments, complete with markup. A field loaded using the x s l -  c o p y - o f  
keyword word would contain the entire XML fragment shown in Figure 5.9. If 
neither of these special keywords were used, the p r o  1 og field would only include 
the content of the p r o  l o g  element: "To be, to be, the question." 

<prolog>To be, 

<child 1 attribute 1="this text won't"> or not </child 1> 

to be, 

<child 2 attribute 2="be included"> that is </child 2> 

the question. 

</prolog> 

Mixed content sample data. 
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5.6.3 

5.6.4 

Using Links to Create Composite Structures 
An important feature of the object loader is that it can perform links to retrieve 
single attributes or entire data objects from another linked library. Assuming that 
the Mutation databank is linked to Swiss-Prot, an example is adding an attribute to 
the Mutation loader with the description line from a linked Swiss-Prot entry. The 
following line instructs the object loader to link to Swiss-Prot using the shortest 
path and to extract the description token from the linked entry. 

$LoadAttr-[proteinDescription 
load-$Tok- [description link-swissprot] 

] 

Another possibility would be, rather than extracting a single token, to attach an 
entire object as defined by an already existing loader class for Swiss-Prot, in this 
case the loader SeqS imp 1 e. 

$LoadAttr- [protein 
load-$Tok- [link-swissprot loader-$SeqSimple_Loader] 

] 

As information about a certain real-world object is scattered across many data- 
banks, object loaders can provide an extremely valuable foundation for writing 
programs to display or disseminate these real-world objects. It is possible to define 
and design these objects freely and in a second step decide where the individual 
information pieces can be retrieved for their assembly. 

Exporting Objects to XML 
SRS allows users to export data assembled by the object loader to a generic XML 
format or to any of the standard XML formats. When converting data to a generic 
format, SRS creates a well-formed XML document with an accompanying DTD. 
This functionality can be invoked from the SRS Web interface or from one of 
the APIs (see Section 5.8). This functionality is provided for every object loader 
specification by default. If users wish to convert data to a specific format, a pub- 
lic standard, or a format the user invented, they must use a set of XML print 
metaphor objects that represent and describe the elements and attributes in the 
target format. 

The process for creating XML print metaphors is similar to the process for 
creating an XML databank definition file. Before a new set of print metaphors can 
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be generated, the user must obtain an accurate DTD for the target XML format. 
An SRS utility analyzes the DTD and creates print metaphor object templates for 
all of the XML elements and attributes in the target format. The user must then 
edit the resulting file to identify data sources for each element and attribute in the 
target format. The new SRS Visual Administration Tool includes a graphical user 
interface (GUI) that greatly simplifies the process of editing print metaphors. 

Data objects can also be exported to a target XML format using an XSLT style 
sheet. This process is slightly less convenient than using print metaphors because 
it involves an extra conversion step. The user must first export the data to the 
generic XML format, then invoke an XSLT style sheet that converts the generic 
format to the target format. 

XML print metaphors can also be used to transform data from any source 
into an XML format that is compatible with Microsoft's Office Web Components 
(OWC) [29]. This technology allows data to be displayed and manipulated using 
either an Excel spreadsheet or a pivot table embedded in the SRS browser. The 
pivot table component allows the user to do sophisticated sorting and grouping 
operations on the data. Both components have an "Export to Excel" button that 
allows the data to be easily saved to an Excel workbook file. 

5.7 SCIENTIFIC ANALYSIS TOOLS 

A key feature of SRS is its ability to integrate and use scientific analysis tools that 
can be applied to user data or to data resulting from database queries. The results 
generated by these tools can be stored, in turn, in tool-specific databanks, which 
can then be treated like any other SRS databank. The difference in these databanks 
is that they are user owned and constitute part of the user session with SRS. 

All tools that can be integrated fulfill the following requirements: 

�9 It can be launched with a UNIX command line. 

�9 It receives input through command line argument or input files. 

�9 It writes output to files or to the standard output device. 

In bioinformatics, hundreds of tools can be found with these properties. They 
include BLAST, FASTA for sequence similarity searching, or Clustal [30] for multi- 
ple sequence alignment. A selection of these can be combined within an automated 
annotation pipeline to predict all genes for a genome or, for all proteins derived 
from these genes, the protein function annotation. Pipelines like this, together with 
their output, can be integrated as a single tool into SRS. Currently SRS supports 
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about 200 tools, including BLAST, FASTA, stackPACK [31], and the majority of 
the tools in EMBOSS. 

A tool can be added to SRS through meta-data by defining the SRS library 
with the syntax and data fields of the tool output, information about all tool input 
options, validation rules to test a parameter set specified by the user, pre-defined 
parameter sets, association to a data type, and so forth. 

SRS has a growing set of pre-defined data types, such as protein sequence, 
which can be extended by the administrator. These data types can be associated 
with databanks that contain data of this type, tools that take it as input, and tools 
that produce it as output. This information can be used to build user interfaces 
that know which tools apply to which databases or workflows that feed tools with 
outputs of other tools. 

5.7.1 Processing of Input and Output 
Many tools require some pre-processing steps like setting up the run-time envi- 
ronment or conversion of the input sequence to a format they recognize, and post- 
processing such as cleanup of additional output or preserving input data values. 
All of these can be specified as part of the tool definition or by using pre-defined 
hooks for shell scripting. 

Output can be processed at many levels, depending on the detail required. 
A simple text view of the output is enough for some applications, but where the 
results can be parsed for object loaders, this is much preferred. A key decision is the 
level at which an entry in the output should be returned by a later query. The entire 
output is usually a single entry for simple analysis of a sequence, but for search 
tools like BLAST it is preferable to represent each hit in the sequence databases as a 
separate entry so these can be linked to the source data. This seriously complicates 
the task of developing a parser as the entry information is split in several sections 
of a file, which can be several megabytes in size, but the increased flexibility more 
than justifies the extra effort. 

An important implication of parsing and indexing tool outputs is that the 
respective tool libraries can become part of the SRS Universe if link informa- 
tion exists. For instance, all outputs from sequence similarity search tools can be 
linked to the sequence databank searched. Assuming that the search databank is 
connected to the SRS Universe, questions like "How many proteins from a certain 
protein family or metabolic pathway were found?" can be asked. Links also can be 
used to compare results obtained by different search tools; for instance, through 
a single SRS query a list of hits that were found by both FASTA and BLAST can 
be obtained. 
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5.7.2 Batch Queues 
Batch queues allow the administrator to specify where and when analyses can be 
run. Once batch queuing is enabled, it is possible to associate a tool with one 
or more queues with different characteristics. SRS provides support for several 
popular batch queuing systems such as LSF [32], the Network Queuing System 
(NQS) [33], the Distributed Queuing System (DQS) [34], or the SUN Grid Engine 
[35]. 

If a tool associated with a batch queue is launched, the job is submitted to this 
batch queue and the Web interface (see Section 5.8, Interfaces to SRS) reports the 
command line and provides a link to the job status page. This page displays the 
full list of batch runs. Selecting a completed run will bring up the results. When 
an application has not been assigned to a batch queue it will be run interactively. 

5.8 INTERFACES TO SRS 

Several interfaces to SRS exist, which provide full access to all its functions. They 
include: 

�9 Creating and managing a user session 

�9 Performing queries over the databanks 

�9 Sorting query result sets 

�9 Launching analysis tools 

�9 Accessing meta-information 

The Web interface is implemented as a Common Gateway Interface (CGI), a 
stateless server that is invoked for every request. However, using the APIs of SRS 
Objects it is possible to write stateful and multi-threaded servers. 

5.8.1 The Web Interface 
The most popular access to SRS is through a Web interface. With it the user cre- 
ates a session that can be temporary or permanent. Within the session the results 
of many user actions are stored. These include queries, tool launches, and cre- 
ations of views. The Web interface provides several query forms, one of which 
is the highly customizable canned query form that allows administrators to set 
up intuitive forms that enable an inexperienced user to launch even complex 
queries. 
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5.8.2 SRS Objects 
SRS Objects is a package of object-oriented interfaces to SRS. It is designed for 
software developers who want to access the functionality of SRS from within their 
own object-oriented application. SRS Objects includes four language-specific APIs, 
which are: 

�9 C++ 

�9 Java 

�9 Perl 

�9 Python 

SRS Objects also includes the SRS Common Object Request Broker Archi- 
tecture (CORBA) Server, compliant with the CORBA 2.4 specification, which is 
generally referred to as SRSCS. 

The C++ API represents the foundation both for the other three APIs (gen- 
erated automatically from the C++ declarations using the public domain SWIG 
package) and SRSCS, whose interfaces and operations wrap the C++ API classes 
and methods. As a consequence, in terms of SRS interaction, the four APIs and 
SRS CORBA Server are almost identical and provide the same types and method 
signatures. 

The package SRS Objects provides the following major functionalities: 

�9 Creation of temporary or permanent SRS sessions and interaction with them 

�9 Access to meta-information about the installed databank groups, databanks, 
tools, links, etc. 

�9 Querying of databanks using the SRS query language 

�9 Accessing databank entries in a variety of ways 

�9 Launching of analysis tools and managing their results 

�9 Use and dynamic creation of the SRS object loaders 

�9 Working with the SRS Objects manager system to create and use dynamic 
types 

In addition, SRS Objects abstracts from the developer tasks such as the ini- 
tialization of the SRS system, SRS memory management, and SRS error handling. 

Central to SRS Objects, as in the Web server, is the session object. It must 
always be created at the beginning of the program. As in the Web server, the 
session is associated to a directory where the results of the user actions are stored. 
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5.8.3 

This means the Web client and a program written with SRS Objects can share a 

session and its contents. 
The following program example in Perl illustrates the use of SRS Objects. It 

starts by creating a session object, then queries all Swiss-Prot entries with kinase 
in the description field, and finally prints a few attributes for each entry in the 

result. 

$session = new Session; 

$set = Ssession->query(" [swissprot-description:kinase]", .... ) ; 

for ($i=0; $i<$set->size() ; ++$i) { 

Sentry = Sset->getEntry($i) ; 

$obj = $entry->load("SwissEntry") ; 

print "Accession: ", $obj->attrStr("Accession"), "\n"; 

print "Description: ", $obj->attrStr("Description"), "\n"; 

print "SeqLength- ", $obj->attrInt ( "SeqLength" ) , "\n" ; 

SOAP and Web Services 
Currently SRSCS is the only client server interface to SRS. The others are in-process 
APIs and require the client application to be run on the same computer as the SRS 
server. CORBA is well suited for client server applications on the same local area 
network (LAN), but it is of much more limited use across the Internet or an intranet. 
The simple object access protocol (SOAP) and the Web Services standard are much 
better suited for this type of application and are also very compatible with SRS 
functionality. A Web Services interface, which will provide the same functionality as 
the existing SRS Objects APIs is currently being built. 

5.9 AUTOMATED SERVER MAINTENANACE 
WITH SRS PRISMA 

SRS Prisma is an extension package for SRS that can assist a site administrator 
with the sometimes onerous task of keeping the flat files, XML files, and indices for 
installed libraries as up to date as possible. This is done by comparing the status of the 
local files and indices with the corresponding data files at an appropriate remote FTP 
site. Any files or indices found to be out of date are replaced by downloading new 
data and/or by rebuilding the appropriate indices. In addition, SRS Prisma can be 
used as a more general data management tool, carrying out tasks such as reformatting 
newly downloaded data files, or creating new data files from existing SRS data files 
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and indices. SRS Prisma can be used on an ad hoc basis by the administrator, but it 
is also ideal for daily scheduling to ensure that all databases are kept as up to date 
as possible. To assist the administrator in monitoring the completion status of any 
update processes, Prisma creates a complete archive of Web reports from up to 31 
days prior, including easy-to-use graphical views. 

In a situation where many databases need to be updated and where a large range 
of tasks is involved (from downloading, to indexing, to data reformatting), Prisma 
will determine the minimum number of tasks to be carried out and the dependencies 
between these tasks. For example, the building of a link index requires the to  and 
from indices to be up to date. In such a case, the link task would be delayed until any 
required rebuilding of the to  and from indices was complete. In the event that any 
of the required tasks fails, the architecture employed by Prisma ensures that any other 
tasks that do not depend on failed tasks are completed. The Prisma job will finish 
when all the tasks that can be completed have been done. For instance, if the down- 
load phase fails for SWISSNEW, the downloading and indexing of other databases 
should be unaffected. Other important features of SRS Prisma are as follows: 

�9 Prisma allows a failed job to be re-run from the point at which it failed, 
thereby minimizing the repetition of tasks, which can be time-consuming and 
processor-intensive. For example, if the download phase for a particular data- 
bank has failed due to a transient external problem (e.g., a problem accessing 
the relevant FTP site), the Prisma job can be re-run once this problem has been 
resolved. In such a case only the failed tasks and those dependent on them 
will be run. 

�9 Tasks can be carried out in parallel to optimize performance on multiple 
processor machines. This type of parallelization includes indexing/merging 
and downloading. If a databank consists of several files that can be indexed 
in parallel, Prisma will interleave downloading and indexing of these files. 

�9 Offline processing of downloads and indexing ensures that during the updat- 
ing job the SRS server continues to function in an uninterrupted way. The new 
databanks and indices are only moved online after completion of the entire 
job. 

�9 Staged Prisma runs allow controlled and automated decision making to en- 
sure robustness and minimized maintenance. This allows Prisma to bring the 
update job to an end even if individual tasks fail. 

�9 An integral part of Prisma is a facility to check the quality of all integrated 
databanks. Every day every databank is checked for configuration errors, 
compliance of flat file data to the rules of the token server, the validity of the 
schema information that SRS holds for relational databanks, and so forth. 
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Prisma is normally set up to run every night. It provides extensive reporting for 
the jobs it ran during the night and all the quality checks. Prisma archives the reports 
within a sliding window of 31 days. 

Apart from relational databanks that can be accessed through a network con- 
nection, flat files and XML sources must be on the same LAN as the SRS server. This 
is expensive because the storage must be provided, but it guarantees stability and 
speed. SRS Prisma can keep all local copies of the databanks current in a completely 
automated fashion, checking every day the integrity of the system and the consistency 
of each databank and tool. 

5.10 
�9 . . . ~  

CONCLUSION 

SRS can integrate the main sources of structured or semi-structured data, flat file 
databanks, XML files, relational databanks, and analysis tools. It provides technol- 
ogy to access these data, but also to transform them to a common mind-set. Data 
from the different sources will look and behave in exactly the same way, effectively 
shielding users from the complexities of the underlying data sources. This is also true 
for developers who use SRS APIs to write custom programs. SRS forms a truly scal- 
able data and analysis tool integration platform onto which developers can build new 
databases, analysis tools, user views, and canned queries to tailor the environment 
to the needs of their company or institution. 

Using bi-directional and high-speed links, SRS transforms the multitude of inte- 
grated databanks into a network, which paves the way for the full exploration of the 
relationships between the data sources (e.g., through cross-databank queries). The 
different sources can be combined using object loaders, which are able to build data 
objects by extracting data fields from the entire network. 

The federated approach to integration, in combination with the use of meta- 
data, means that data can be maintained in its original format. This is important 
so there is no data loss due to normalization or reformatting. Object loaders can be 
designed either to provide standardized access to diverse data sources or to extract 
information transparently from across the entire databank network. SRS, therefore, 
is both capable of supporting the native structure of databanks and abstractions or 
unified versions. It supports data in their native format, but it also supports standards 
derived from them or imposed onto them. 

SRS does not improve the data it integrates, nor does it create a super schema 
over the data, but with its linking capability and object loaders, it provides the perfect 
framework for the semantic integration of the data sources in bioinformatics. The 
inherent flexibility and extensibility of SRS means that bioinformaticians can use 
SRS as a solid foundation for development where they can incorporate their own 
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data and knowledge of the scientific domain to provide a truly comprehensive view 
of genomic data. 
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6 
CHAPTER 

The Kleisli Query System 
as a Backbone for 

Bioinformatics Data 
Integration and Analysis 

Jing Chen, Su Yun Chung, and Limsoon Wong 

Biological data is characterized by a wide range of data types from the plain text 
of laboratory records and literature, to nucleic acid and amino acid sequences, 3D 
structures of molecules, high-resolution images of cells and tissues, diagrams of 
biochemical pathways and regulatory networks, to various experimental outputs 
from technologies as diverse as microarrays, gels, and mass spectrometry. These 
data are stored in a large number of databases across the Internet. In addition to 
online interfaces for querying and searching the underlying repository data, many 
Web sites also provide specific computational tools or programs for analysis of 
data. In this chapter the term data sources is used loosely to refer to both databases 
and computational analysis tools. 

Until recently, data sources were set up as autonomous Web sites by individual 
institutions or research laboratories. Data sources vary considerably in contents, 
access methods, capacity, query processing, and services. The major difficulty is 
that the data elements in various public and private data sources are stored in ex- 
tremely heterogeneous formats and database management systems that are often 
ad hoc, application-specific, or vendor-specific. For example, scientific literature, 
patents, images, and other free-text documents are commonly stored in unstruc- 
tured formats like plain text files, hypertext markup language (HTML) files, and 
binary files. Genomic, microarray gene expression, or proteomic data are routinely 
stored in Excel spreadsheets, semi-structured extensible markup language (XML), 
or structured relational databases like Oracle, Sybase, DB2, and Informix. The 
National Center for Biotechnology Information (NCBI) in Bethesda, Maryland, 
which is the largest repository for genetic information, supplies GenBank reports 
and GenPept reports in HTML format with an underlying highly nested data 
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model based on ASN.1 [1]. The computational analysis tools or applications suf- 
fer from a similar scenario: They require specific input and output data formats. 
The output of one program is not immediately compatible with the input require- 
ment of other programs. For example, the most popular Basic Local Alignment 
Search Tool (BLAST) database search tool requires a specific format called FASTA 
for sequence input. 

In addition to data format variations, both the data content and data schemas 
of these databases are constantly changing in response to rapid advances in re- 
search and technology. As the amount of data and databases continues to grow 
on the Internet, it generates another bottleneck in information integration at the 
semantic level. There is a general lack of standards in controlled vocabulary for 
consistent naming of biomedical terms, functions, and processes within and be- 
tween databases. In naming genes and proteins alone, there is much confusion. 
For example, a simple transcription factor, the CCAAT/enhancer-binding protein 
beta, is referred to by more than a dozen names in the public databases, including 
CEBPB, CRP2, and IL6DPB. 

For research and discovery, the biologist needs access to up-to-date data and 
best-of-breed computational tools for data analyses. To achieve this goal, the abil- 
ity to query across multiple data sources is not enough. It also demands the means 
to transform and transport data through various computational steps seamlessly. 
For example, to investigate the structure and function of a new protein, users 
must integrate information derived from sequence, structure, protein domain pre- 
diction, and literature data sources. Should the steps to prepare the data sets 
between the output of one step to the input of the next step have to be carried out 
manually, which requires some level of programming work (such as writing Perl 
scripts), the process would be very inefficient and slow. 

In short, many bioinformatics problems require access to data sources that are 
large, highly heterogeneous and complex, constantly evolving, and geographically 
dispersed. Solutions to these problems usually involve many steps and require in- 
formation to be passed smoothly and usually to be transformed between the steps. 
The Kleisli system is designed to handle these requirements directly by providing a 
high-level query language, simplified SQL (sSQL), that can be used to express com- 
plicated transformations across multiple data sources in a clear and simple way.1 

The design and implementation of the Kleisli system are heavily influenced by 
functional programming research, as well as database query language research. 
Kleisli's high-level query language, sSQL, can be considered a functional 

1. Earlier versions of the Kleisli system supported only a query language based on comprehension 
syntax called Collection Programming Language (CPL) [2]. Now, both CPL and sSQL are available. 
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programming language 2 that has a built-in notion of bulk data types 3 suitable 
for database programming and has many built-in operations required for mod- 
ern bioinformatics. Kleisli is implemented on top of the functional programming 
language Standard ML of New Jersey (SML). Even the data format Kleisli uses 
to exchange information with the external world is derived from ideas in type 
inference in functional programming languages. 

This chapter provides a description of the Kleisli system and a discussion of 
various aspects of the system, such as data representation, query capability, opti- 
mizations, and user interfaces. The materials are organized as follows: Section 6.1 
introduces Kleisli with a well-known example. Section 6.2 presents an overview 
of the Kleisli system. Section 6.3 discusses the data model, data representation, 
and exchange format of Kleisli. Section 6.4 gives more example queries in Kleisli 
and comments on the expressive power of its core query language. Section 6.5 
illustrates Kleisli's ability to use flat relational databases to store complex objects 
transparently. Section 6.6 lists the kind of data sources supported by the Kleisli 
system and shows the ease of implementing wrappers for Kleisli. Section 6.7 gives 
an overview of the various types of optimizations performed by the Kleisli query 
optimizer. Section 6.8 describes both the Open Database Connectivity (ODBC)- 
or Java Database Connectivity (JDBC)-like programming interfaces to Kleisli in 
Perl and Java, as well as its Discovery Builder graphical user interface. Section 6.9 
contains a brief survey of other well-known proposals for bioinformatics data 
integration. 

6.1 MOTIVATING EXAMPLE 

Before discussing the guts of the Kleisli system, the very first bioinformatics data 
integration problem solved using Kleisli is presented in Example 6.1.1. The query 
was implemented in Kleisli in 1994 [5] and solved one of the so-called "impossible" 
queries of a U.S. Department of Energy Bioinformatics Summit Report published 
in 1993 [6]. 

2. Functional programming languages are programming languages that emphasize a particular 
paradigm of programming technique known as functional programming [3, 4]. In this paradigm, 
all programs are expressed as mathematical functions and are generally free from side effects. Ex- 
amples of functional programming languages are LISP, HaskeU, and SML. Some fundamental ideas 
in functional programming languages, such as garbage collection, have also been borrowed by other 
modern programming languages such as Java. 
3. Bulk data types refer to data types that are collections of objects. Examples of bulk data types are 
sets, bags, lists, and arrays. 
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Example 6.1.1 The query was to "find for each gene located on a particular 
cytogenetic band of a particular human chromosome as many of its non-human 
homologs as possible." Basically, the query means "for each gene in a particular 
position in the human genome, find dioxyribonucleic acid (DNA) sequences from 
non-human organisms that are similar to it." 

In 1994, the main database containing cytogenetic band information was 
the Genome Database (GDB) [7], which was a Sybase relational database. To find 
homologs, the actual DNA sequences were needed, and the ability to compare them 
was also needed. Unfortunately, that database did not keep actual DNA sequences. 
The actual DNA sequences were kept in another database called GenBank [8]. At 
the time, access to GenBank was provided through the ASN.1 version of Entrez 
[9], which was at the time an extremely complicated retrieval system. Entrez also 
kept precomputed homologs of GenBank sequences. 

So, the evaluation of this query needed the integration of GDB (a relational 
database located in Baltimore, Maryland) and Entrez (a non-relational database 
located in Bethesda, Maryland). The query first extracted the names of genes on 
the desired cytogenetic band from GDB, then accessed Entrez for homologs of 
these genes. Finally, these homologs were filtered to retain the non-human ones. 
This query was considered "impossible" as there was at that time no system that 
could work across the bioinformatics sources involved due to their heterogeneity, 
complexity, and geographical locations. Given the complexity of this query, the 
sSQL solution below is remarkably short. 

sybase-add (name- "gdb", ...); 

create view locus from locus_cyto_location using gdb; 

create view eref from object_genbank_eref using gdb; 

select accn- g.genbank_ref, nonhuman-homologs. H 

from 

locus c, eref g, 

{select u 

from na-get-homolog-summary(g.genbank_ref) u 

where not(u.title like "%Human%") and not(u.title 

like "%H.sapien%")} H 

where 

c.chrom_num = "22" and g.object_id = c.locus_id 

and not (H = { }); 

The first three lines connect to GDB and map two tables in GDB to Kleisli. After 
that, these two tables could be referenced within Kleisli as if they were two locally 
defined sets, l o c u s  and e r e f .  The next few lines extract from these tables the 
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accession numbers of genes on Chromosome 22, use the Entrez function n a -  
g e t - h o m o l o g - s u m m a r y  to obtain their homologs, and filter these homologs 
for non-human ones. Notice that the from-part of the outer s e l ec t - cons t ruc t  
is of the form { s e l e c t  u .. .  } H. This means that H is the entire set returned 
by s e l e c t  u . . . ,  thus allowing to manipulate and return all the non-human 
homologs as a single set H. 

Besides the obvious smoothness of integration of the two data sources, this 
query is also remarkably efficient. On the surface, it seems to fetch the l o c u s  
table in its entirety once and the e r e f  table in its entirety n times from GDB (a 
naive evaluation of the comprehension would be two nested loops iterating over 
these two tables). Fortunately, in reality, the Kleisli optimizer is able to migrate the 
join, selection, and projections on these two tables into a single efficient access to 
GDB using the optimizing rules from a later section of this chapter. Furthermore, 
the accesses to Entrez are also automatically made concurrent. 

Since this query, Kleisli and its components have been used in a number of 
bioinformatics projects such as GAIA at the University of Pennsylvania, 4 Trans- 
parent Access to Multiple Bioinformatics Information Sources (TAMBIS) at the 
University of Manchester [11, 12], and FIMM at Kent Ridge Digital Labs [13]. 
It has also been used in constructing databases by pharmaceutical/biotechnology 
companies such as SmithKline Beecham, Schering-Plough, GlaxoWellcome, 
Genomics Collaborative, and Signature Biosciences. Kleisli is also the backbone 
of the Discovery Hub product of geneticXchange Inc. 5 

6.2 APPROACH 

The approach taken by the Kleisli system is illustrated by Figure 6.1. It is positioned 
as a mediator system encompassing a complex object data model, a high-level 
query language, and a powerful query optimizer. It runs on top of a large number of 
lightweight wrappers for accessing various data sources. There is also a number of 
application programming interfaces that allow Kleisli to be accessed in an ODBC- 
or JDBC-like fashion in various programming languages for a various applications. 

The Kleisli system is extensible in several ways. It can be used to support 
several different high-level query languages by replacing its high-level query lan- 
guage module. Currently, Kleisli supports a comprehension syntax-based language 
called CPL [2, 14, 15] and a nested relationalized version of SQL called sSQL. 

4. Information about the GAIA project is available at http.//www.cbil.upenn.edu/gaia2/gaia and [10]. 

5. Information about Discovery Hub is available at http.//www.geneticxchange.com. 
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6.1 

FIGURE 

Kleisli positioned as a mediator. 

Only sSQL is used throughout this chapter. The Kleisli system can also be used to 
support many different types of external data sources by adding new wrappers, 
which forward Kleisli's requests to these sources and translate their replies into 
Kleisli's exchange format. These wrappers are lightweight and new wrappers are 
generally easy to develop and insert into the Kleisli system. The optimizer of the 
Kleisli system can also be customized by different rules and strategies. 

When a query is submitted to Kleisli, it is first processed by the high-level 
query language module, which translates it into an equivalent expression in the 
abstract calculus Nested Relational Calculus (NRC). NRC is based on the calcu- 
lus described in Buneman's "Principles of Programming with Complex Objects 
and Collection Types" [16] and was chosen as the internal query representa- 
tion because it is easy to manipulate and amenable to machine analysis. The 
NRC expression is then analyzed to infer the most general valid type for the 
expression and is passed to the query optimizer. Once optimized, the NRC ex- 
pression is then compiled into calls to a library of routines for complex objects 
underlying the complex object data model. The resulting compiled code is then 
executed, accessing drivers and external primitives as needed through pipes or 
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shared memory. Each of these components is considered in further detail in the 
next several sections. 

6.3 DATA MODEL AND REPRESENTATION 

The data model, data representation, and data exchange format of the Kleisli 
system are presented in this section. The data model underlying the Kleisli system 
is a complex object type system that goes beyond the sets of  atomic records or 
fiat relations type systems of relational databases [17]. It allows arbitrarily nested 
records, sets, lists, bags, and variants. A variant is also called a tagged union type, 
and it represents a type that is either this or that. The collection or bulk typesm 
sets, bags, and lists--are homogeneous. To mix objects of different types in a set, 
bag, or list, it is necessary to inject these objects into a variant type. 

In a relational database, the sole bulk data type is the set. Furthermore, this 
set is only allowed to contain records where each field is allowed to contain an 
atomic object such as a number or a string. Having such a restricted bulk data type 
presents at least two problems in real-life applications. First, the particular bulk 
data type may not be a natural model of real data. Second, the particular bulk 
data type may not be an efficient model of real data. For example, when restricted 
to the flat relational data model, the GenPept report in Example 6.3.1 must be 
split into many separate tables to be stored in a relational database without loss. 
The resulting multi-table representation of the GenPept report is conceptually 
unnatural and operationally inefficient. A person querying the resulting data must 
pay the mental overhead of understanding both the original GenPept report and 
its badly fragmented multi-table representation. The user may also have to pay the 
performance overhead of having to reassemble the original GenPept report from 
its fragmented multi-table representation to answer queries. As another example, 
limited with the set type only, even if nesting of sets is allowed, one may not be able 
to model MEDLINE reports naturally. A MEDLINE report records information on 
a published paper, such as its title and its authors. The order in which the authors 
are listed is important. With only sets, one must pair each author explicitly with a 
number representing his or her position in order of appearance. Whereas with the 
data type list, this cumbersome explicit pairing with position becomes unnecessary. 

Example 6.3.1 The GenPept report is the format chosen by NCBI to represent 
information on amino acid sequence. While an amino acid sequence is a string of 
characters, certain regions and positions of the string, such as binding sites and 
domains, are of special biological interest. The feature table of a GenPept report 
is the part of the GenPept report that documents the positions of these regions of 
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special biological interest, as well as annotations or comments on these regions. 
The following type represents the feature table of a GenPept report from Entrez [9]. 

(#uid:num, #title:string, 
#accession:string, #feature: { ( 

#name. string, #start-num, #end-num, 
#anno: [ (#anno_name:string, #descr:string) ]) }) 

It is an interesting type because one of its fields (#feature) is a set of records, 
one of whose fields (#anno) is in turn a list of records. More precisely, it is a 
record with four fields #uid ,  # t i t l e ,  # a c c e s s i o n ,  and # f e a t u r e .  The first 
three of these store values of types num, s t r i n g ,  and s t r i n g  respectively. The 
# u i d  field uniquely identifies the GenPept report. The # f e a t u r e  field is a set 
of records, which together form the feature table of the corresponding GenPept 
report. Each of these records has four fields. #name, # s t a r t ,  #end, and #anno. 
The first three of these have types s t r i n g ,  hum, and num respectively. They 
represent the name, start position, and end position of a particular feature in the 
feature table. The #anno field is a list of records. Each of these records has two 
fields #anno_name and # d e s c r ,  both of type s t r i n g .  These records together 
represent all annotations on the corresponding feature. 

In general, the types are freely formed by the syntax: 

t ::= n u m  l s t r i n g  [ b o o l l  

t ::= { t}  I { Jti } I [t]  i (I~ .t~, ...,ln "t,) I<l~ "t~, ...,1, "tn> 

Here num, s t r i n g ,  and b o o l  are the base types. The other types are constructors 
and build new types from existing types. The types {t}, { Itl }, and [t] respec- 
tively construct set, bag, and list types from type t. The type (11 : h , . . . ,  In : t ,)  
constructs record types from types tl,..., tn. The type <11 : tl,..., In : tn> constructs 
variant types from types tl,.. . ,  tn. The flat relations of relational databases are 
basically sets of records, where each field of the record is a base type; in other 
words, relational databases have no bags, no lists, no variants, no nested sets, 
and no nested records. Values of these types can be represented explicitly and 
exchanged as follows, assuming that the instances of e are values of appropriate 
types: (11 : el , . . . ,  In :en)  for records; <1 :e>  for variants; {el,..., en} for sets; 
{ l e~,..., en  I } for bags; and [el,..., en ] for lists. 

E x a m p l e  6.3.2 Part of the feature table of GenPept report 131470, a tyrosine 
phosphatase 1C sequence, is shown in the following. 
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(#uid'131470, #accession-"131470", 
#title-"... (PTP-IC)...", #feature-{( 
#name-"source", #start-0, #end-594, #anno- [ 
(#anno_name-"organism", #descr."Mus musculus"), 
(#anno name-"db_xref", #descr-"taxon-10090")]), 

...}) 

The particular feature goes from amino acid 0 to amino acid 594, which is actually 
the entire sequence, and has two annotations: The first annotation indicates that 
this amino acid sequence is derived from a mouse DNA sequence. The second is 
a cross reference to the NCBI taxonomy database. 

The schemas and structures of all popular bioinformatics databases, flat files, 
and software are easily mapped into this data model. At the high end of data 
structure complexity are Entrez [9] and AceDB [18], which contain deeply nested 
mixtures of sets, bags, lists, records, and variants. At the low end of data structure 
complexity are the relational database systems [17] such as Sybase and Oracle, 
which contain flat sets of records. Currently, Kleisli gives access to more than 60 of 
these and other bioinformatics sources. The reason for this ease of mapping bioin- 
formatics sources to Kleisli's data model is that they are all inherently composed of 
combinations of sets, bags, lists, records, and variants. Kleisli's data model directly 
and naturally maps sets to sets, bags to bags, lists to lists, records to records, and 
variants to variants without having to make any (type) declaration beforehand. 

The last point deserves further consideration. In a dynamic, heterogeneous en- 
vironment such as that of bioinformatics, many different database and software 
systems are used. They often do not have anything that can be thought of as an 
explicit database schema. Further compounding the problem is that research biol- 
ogists demand flexible access and queries in ad hoc combinations. Thus, a query 
system that aims to be a general integration mechanism in such an environment 
must satisfy four conditions. First, it must not count on the availability of schemas. 
It must be able to compile any query submitted based solely on the structure of that 
query. Second, it must have a data model that the external database and software 
systems can easily translate to without doing a lot of type declarations. Third, 
it must shield existing queries from evolution of the external sources as much as 
possible. For example, an extra field appearing in an external database table must 
not necessitate the recompilation or rewriting of existing queries over that data 
source. Fourth, it must have a data exchange format that is straightforward to use 
so it does not demand too much programming effort or contortion to capture the 
variety of structures of output from external databases and software. 

Three of these requirements are addressed by features of sSQL's type system. 
sSQL has polymorphic record types that allow to express queries such as: 
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create function get-rich-guys (R) as 

select x.name from R x where x.salary > i000; 

which defines a function that returns names of people in R earning more than 
$1000. This function is applicable to any R that has at least the name and the 
s a l a r y  fields, thus allowing the input source some freedom to evolve. 

In addition, sSQL does not require any type to be declared at all. The type and 
meaning of any sSQL program can always be completely inferred from its structure 
without the use of any schema or type declaration. This makes it possible to plug 
in any data source logically without doing any form of schema declaration, at a 
small acceptable risk of run-time errors if the inferred type and the actual structure 
are not compatible. This is an important feature because most biological data 
sources do not have explicit schemas, while a few have extremely large schemas 
that take many pages to write down--for  example, the ASN.1 schema of Entrez 
[1 ]--making it impractical to have any form of declaration. 

As for the fourth requirement, a data exchange format is an agreement on how 
to lay out data in a data stream or message when the data is exchanged between two 
systems. In this context, it is the format for exchanging data between Kleisli and 
all the bioinformatics sources. The data exchange format of Kleisli corresponds 
one-to-one with Kleisli's data model. It provides for records, variants, sets, bags, 
and lists; and it allows these data types to be composed freely. In fact, the data 
exchange format completely adopts the syntax of the data representation described 
earlier and illustrated in Example 6.3.2. This representation has the interesting 
property of not generating ambiguity. For instance, a set symbol { represents a 
set, whereas a parenthesis ( denotes a record. In short, this data exchange format 
is self describing. The basic specification of the data exchange format of Kleisli is 
summarized in Figure 6.2. For a more detailed account, please see Wong's paper 
on Kleisli from the 2000 IEEE Symposium on Bioinformatics and Bio-engineering 
[19]. 

A self-describing exchange format is one in which there is no need to define 
in advance the structure of the objects being exchanged. That is, there is no fixed 
schema and no type declaration. In a sense, each object being exchanged carries 
its own description. A self-describing format has the important property that, no 
matter how complex the object being exchanged is, it can be easily parsed and 
reconstructed without any schema information. The ISO ASN.1 standard [20] on 
open systems interconnection explains this advantage. The schema that describes 
its structure needs to be parsed before ASN. 1 objects, making it necessary to write 
two complicated parsers instead of one simple parser. 



Data Type Data Layout Remarks 

Unit 

Booleans true 

false I 

Numbers 123 Positive numbers 

123.123 

~ 123 Negative numbers 

"123.123 

Strings "a string" A string is put inside double quotes 

Records (#11 : O1, A record is put inside round brackets. 

The iabel-:-value triplets enumerate 

Bin : On ) the fields of the record 

Variants <#/: O> A variant is put inside angle brackets 

Sets { O1, A set is put inside curly brackets 

O.} 

Bags {101, A bag is put inside curly-bar brackets 

o.I} 

Lists [ O1, A list is put inside square brackets 

O . ]  i 

User-defined types l o n g i t u d e  "50E" A user-defined type is preceded by its name 

Errors 

I 
i 

e r r o r  " i t  g o o f e d "  An error message is preceded by e r r o r  

6.2 

FIGURE 

The basic form of the Kleisli Exchange Format.  Punctuations and indentations 
are not  significant. The semicolon indicates the end of a complex object. Multiple 
complex objects can be laid out in the same stream. 
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6.4 QU E RY CAPABILITY 

sSQL is the primary query language of Kleisli used in this chapter. It is based on the 
de facto commercial database query language SQL, except for extensions made to 
cater to the nested relational model and the federated heterogeneous data sources. 
Rather than giving the complete syntax, sSQL is illustrated with a few examples 

on a set of feature tables DB. 

Example 6.4.1 The query below "extracts the titles and features of those ele- 
ments of a data source DB whose titles contain " t y ros ine"  as a substring." 

create function get-title-from-featureTable (DB) as 

select title- x.title, feature- x.feature 

from DB x where x.title like "%tyrosine%"; 

This query is a simple project-select query. A project-select query is a query that 
operates on one (flat) relation or set. Thus, the transformation such a query can 
perform is limited to selecting some elements of the relation and extracting or pro- 
jecting some fields from these elements. Except for the fact that the source data 
and the result may not be in first normal form, these queries can be expressed in a 
relational query language. However, sSQL can perform more complex restructur- 
ings such as nesting and unnesting not found in SQL, as shown in the following 

examples. 

Example 6.4.2 The following query flattens the source DB completely. 12s is a 
function that converts a list into a set. 

create function flatten-featureTable (DB) as 

select 

title-x.title, feature-f.name, start-f.start, end-f.end, 

anno-name �9 a. anno_name, anno-descr �9 a. descr 

from DB x, x.feature f, f.anno.12s a; 

The next query demonstrates how to express nesting in sSQL. Notice that the 
e n t r i e s  field is a complex object having the same type as DE. 

create function nest-featureTable-by-organism (DB) as 

select 

organism- z, 

entries- (select distinct x 
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from DB x, x.feature f, f.anno a 

where a.anno_name = "organism" and a.descr = z) 

from (select distinct y.anno-descr 

from DB.flatten-featureTable y 

where y. anno-name =" organism" ) z ; 

The next couple of more substantial queries are inspired by one of the most 
advanced functionalities of the EnsMart interface of the EnsEMBL system [21]. 

Example 6.4.3 The feature table of a GenBank report has the type below. The 
field # p o s i t i o n  of a feature entry is a list indicating the start and stop positions 
of that feature. If the feature entry is a CDS, this list corresponds to the list of 
exons of the CDS. The field #anno  is a list of annotations associated with the 
feature entry. 

(#uid- num, #title- string, #accession- string, 

#seq- string, #feature- { ( 

#name. string, 

#position. [(#start- num, #end- num, 

#negative- bool .... ) ], 

#anno- [(#anno name- string, #descr- string) ], 

...)} .... )} 

Given a set DB of feature tables of GenBank chromosome sequences, one can 
extract the 500 bases up stream of the translation initiation sites of all disease 
genes-- in the sense that these genes have a cross reference to the Online Mendelian 
Inheritance of Man database (OMIM)- -on  the positive strand in DB as below. 

select 

uid-x.uid, protein-r.descr, flank.string-span(x.seq, 

p.start - 500, p.start) 

from DB x, x.feature f, {f.position.list-head} p, 

f.anno.12s a, f.anno.12s r 

where not (p.#negative) 

and a.descr like "MIM-%" and a.anno name = "db xref" 

and r. anno_name = "protein_id" 

Similarly, one can extract the first exons of these same genes as follows: 

select 

uid-x.uid, protein-r.descr, exonl-string-span 

(x.seq, p.start, p.end) 
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from DB x, x.feature f, {f.position.list-head} p, 

f.anno.12s a, f.anno.12s r 

where not (p.#negative) 

and a.descr like "MIM-%" and a.anno name : "db xref" 
m m 

and r.anno name - "protein id" 

These two example queries illustrate how a high-level query language makes it 

possible to extract very specific output  in a relatively straightforward manner. 

The next query illustrates a more ambitious example of an in silico discovery 

kit (ISDK). Such a kit prescribes experimental steps carried out in computers very 

much like the experimental protocol carried out in wet-laboratories for a specific 

scientific investigation. From the perspective of Kleisli, an in silico discovery kit 

is just a script writ ten in sSQL, and it performs a defined information integration 

task very similar to an integrated electronic circuit. It takes an input data set and 

parameters from the user, executes and integrates the necessary computat ional  

steps of database queries and applications of analysis programs or algorithms, 

and outputs a set of results for specific scientific inquiry. 

Example 6.4.4 The simple in silico discovery kit illustrated in Figure 6.3 demon- 

strates how to use an available ontology data source to get around the problem 

of inconsistent naming in genes and proteins and to integrate information across 

multiple data sources. It is implemented in the following sSQL script. 6 With the 

user input of gene name G, the ISDK performs the following tasks: "First, it re- 
trieves a list of  aliases for G from the gene nomenclature database provided by 
the Human Genome Organization (HUGO). Then it retrieves information for 
diseases associated with this particular protein in OMIM, and finally it retrieves 
all relevant references from MEDLINE." 

create function get-info-by-genename (G) as 

select 

hugo- w, omim- y, pmidl-abstract- z, 

num-medline-entries �9 list-sum (iselect ml-get-count- 

general(n) from x.Aliases.s21 n) 

6. s 21 denotes a function that converts a set into a list. 1 i s t -  sum is a function to sum a list of numbers. 
The function ml -ge t -coun t -genera l  accesses MEDLINE and computes the number of MEDLINE 
reports matching a given keyword, whereas m l - g e t - a b s t r a c t - b y - u i d  is a function that accesses 
MEDLINE to retrieve reports given a unique identifier, and webomim-get-id accesses the OMIM 
database to obtain unique identifiers of OMIM reports matching a keyword, webomim-get-de t a i  1 
is a function that accesses OMIM to retrieve reports given a unique identifier, hugo-get-by-symbol 
is a function that accesses the HUGO database and returns HUGO reports matching a given gene name. 
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from 

hugo-get-by-symbol (G) w, 

webomim-get-id(searchtime'0, maxhits-0, searchfields-{}, 

searchterms :G) x, 

webomim-get-detail (x.uid) y, 

ml-get-abstract-by-uid (w. PMIDI) z 

where 

x.title like ("%" ^ G ^ "%"); 

For instance, this query get-info-by-genename can be invoked with the tran- 
scription factor CEBPB as input to obtain the following result. 

{(#hugo: (#HGNC: "1834", 

#Symbol- "CEBPB", #PMIDI- "1535333", ... 

#Name: "CCAAT/enhancer binding protein (C/EBP), beta", 

#Aliases : {"LAP", "CRP2", "NFIL6", "IL6DBP", "TCF5" }), 

6.3 

FIGURE 

An "in silico discovery kit" that uses an available ontology data source to get 
around the problem of inconsistent naming in genes and proteins, and integrates 
information across multiple data sources. 
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#omim- (#uid- 189965, #gene_map_locus- "20q13.1", 

#allelic variants- {} .... ), 
#pmidl-abstract- (#muid- 1535333, 

#authors- "Szpirer C...", #address- "Departement 

de Biologie ...", 

#title- "Chromosomal localization in man and rat of the 

genes encoding ...", 

#abstract- "By means of somatic cell hybrids segregating 

either human...", 

#journal- "Genomics 1992 Jun; 13(2)-292-300"), 

#num-medline-entries- 1936)} 

Such queries fulfill many of the requirements for efficient in silico discovery pro- 
cesses: (1) Their modular nature gives scientists the flexibility to select and combine 
specific queries for specific research projects; (2) they can be executed automatically 
by Kleisli in batch mode and can handle large data volumes; (3) their scripts are 
re-usable to perform repetitive tasks and can be shared among scientific collabora- 
tors; (4) they form a base set of templates that can be readily modified and refined 
to meet different specifications and to make new queries; and (5) new databases 
and new computational tools can be readily incorporated to existing scripts. 

The flexibility and power shown in these sSQL examples can also be experi- 
enced in Object-Protocol Model (OPM) [22] and to a lesser extent in Discovery- 
Link [23]. With good planning, a specialized data integration system can also 
achieve great flexibility and power within a more narrow context. For example, 
the EnsMart tool of EnsEMBL [21] is a well-designed interface that helps a non- 
programmer build complex queries in a simple way. In fact, an equivalent query to 
the first sSQL query in Example 6.4.3 can be also be specified using EnsMart with 
a few clicks of the mouse. Nevertheless, there are some unanticipated cases that 
cannot be expressed in EnsMart, such as the second sSQL query in Example 6.4.3. 

While the syntactic basis for sSQL is SQL, its theoretical inspiration came 
from a paper by Tannen, Buneman, and Nagri [24] where structural recursion 
was presented as a query language. However, structural recursion presents two 
difficulties. The first is that not every syntactically correct structural recursion 
program is logically well defined [25]. The second is that structural recursion has 
too much expressive power because it can express queries that require exponential 
time and space. 

In the context of databases, which are typically very large, programs (queries) 
are usually restricted to those that are practical in the sense that they are in a low 
complexity class such as LOGSPACE, PTIME, or TC ~ In fact, one may even want 
to prevent any query that has greater than O(n x log n) complexity, unless one is 
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confident that the query optimizer has a high probability of optimizing the query 
to no more than O(n x log n) complexity. Database query languages such as SQL, 
therefore, are designed in such a way that joins are easily recognized because joins 
are the only operations in a typical database query language that require O(n 2) 
complexity if evaluated naively. 

Thus, Tannen and Buneman suggested a natural restriction on structural re- 
cursion to reduce its expressive power and to guarantee it is well defined. Their 
restriction cuts structural recursion down to homomorphisms on the commuta- 
tive idempotent monoid of sets, revealing a telling correspondence to monads [15]. 
A nested relational calculus, which is denoted here by A/'TEC, was then designed 
around this restriction [16]. HT~C is essentially the simply typed lambda calculus 
extended by a construct for building records, a construct for decomposing records 
by field selection, a construct for building sets, and a construct for decomposing 
sets by means of the restriction on structural recursion. Specifically, the construct 
for decomposing sets is [.J{el I x ~ e2}, which forms a set by taking the big union 
of el[o/x] o v e r  each o in the set e2. 

The expressive power of A/'TEC and its extensions are studied in numerous 
studies [16, 26-29]. Specifically, the A/'TEC core has exactly the same power as all 
the standard nested relational calculi and when restricted to flat tables as input- 
output, it has exactly the same power as the relational calculus. In the presence 
of arithmetics and a summation operator, when restricted to flat tables as input- 
output, it has exactly the power of entry-level SQL. Furthermore, it captures stan- 
dard nested relational queries in a high-level manner that is easy for automated 
optimizer analysis. It is also easy to translate a more user-friendly surface syntax, 
such as the comprehension syntax or the SQL select-from-where syntax, into this 
core while allowing for full-fledged recursion and other operators to be imported 
easily as needed into the system. 

6.5 WAREHOUSING CAPABILITY 

Besides the ability to query, assemble, and transform data from remote heteroge- 
neous sources, it is also important to be able to conveniently warehouse the data 
locally. The reasons to create local warehouses are several: (1) It increases effi- 
ciency; (2) it increases availability; (3) it reduces the risk of unintended denial of 
service attacks on the original sources; and (4) it allows more careful data cleans- 
ing that cannot be done on the fly. The warehouse should be efficient to query 
and easy to update. Equally important in the biology arena, the warehouse should 
model the data in a conceptually natural form. Although a relational database 
system is efficient for querying and easy to update, its native data model of flat 
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tables forces an unnatural and unnecessary fragmentation of data to fit third nor- 
mal form. 

Kleisli does not have its own native database management system. Instead, 
Kleisli has the ability to turn many kinds of database systems into an updatable 
store conforming to its complex object data model. In particular, Kleisli can use 
flat relational database management systems such as Sybase, Oracle, and MySQL, 
to be its updatable complex object store. It can even use these systems simultan- 
eously. This power of Kleisli is illustrated using the example of GenPept reports. 

Example 6.5.1 Create a warehouse of GenPept reports and initialize it to re- 
ports on protein tyrosine phosphatases. Kleisli provides several functions to access 
GenPept reports remotely from Entrez [9]. One of them is a a - g e t - s e q f e a t -  
g e n e r a l ,  which retrieves GenPept reports matching a search string. 

! connect to our Oracle database system 

oracle-cplobj-add (name. "db", ...); 

! create a table to store GenPept reports 

create table genpept(uid- "NUMBER", detail- "LONG") 

using db; 

! initialize it with PTP data 

select (uid- x.uid, detail- x) into genpept from 

aa-get-seqfeat-general("PTP") x using db; 

! index the uid field for fast access 

db-mkindex (table- "genpept", index- "genpeptindex", 

schema. "uid"); 

! let's use it now to see the title of report 131470 

create view GenPept from genpept using db; 

select x.detail.title from GenPept x where x.uid = 131470; 

In this example, a table genpept is created in the local Oracle database system. 
This table has two columns, u i d  for recording the unique identifier and de -  
t a i l  for recording the GenPept report. A LONG data type is used for the d e t a i l  
column of this table. However, recall from Example 6.3.2 that each GenPept re- 
port is a highly nested complex object. There is therefore a mismatch between 
LONG (which is essentially a big, uninterpreted string) and the complex structure 
of a GenPept report. This mismatch is resolved by the Kleisli system, which au- 
tomatically performs the appropriate encoding and decoding. Thus, as far as the 
Kleisli user is concerned, x.  d e t a i l  has the type of GenPept report as given in 
Example 6.3.1. So the user can ask for the title of a report as straightforwardly as 
x.  d e t a i l ,  t i t l e .  Note that encoding and decoding are performed to map the 
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complex object transparently into the space provided in the de t a i  1 column; that 
is, the Kleisli system does not fragment the complex object to force it into third 
normal form. 

There are two possible techniques to use a flat relational database system as a 
nested relational store. This first is to add a layer on top of the underlying flat rela- 
tional database system to perform automatic normalization of nested relations into 
the third normal form. This is the approach taken by systems such as OPM [22]. 
Such an approach may lead to performance problems as the database system may 
be forced to perform many extra joins under certain situations. The second tech- 
nique is to add a layer on top of the underlying flat relational database system to 
perform automatic encoding and decoding of nested components into long strings. 
This is the technique adopted in Kleisli because it avoids unnecessary joins and 
because it is a simple extension--without significant additional overhead--to the 
handling of Kleisli's data exchange format. 

6.6 DATA SOURCES 

The standard version of the Kleisli system marketed by geneticXchange, Inc. sup- 
ports more than 60 types of data sources. These include the categories below. 

�9 Relational database management systems: All popular relational database 
management systems are supported, such as Oracle, Sybase, DB2, Informix, 
and MySQL. The support for these systems is quite sophisticated. For ex- 
ample, the previous section illustrates how the Kleisli system can turn these 
flat database systems transparently into efficient complex object stores that 
support both read and write access. A later section also shows that the Kleisli 
system is able to perform significant query optimization involving these 
systems. 

�9 Bioinformatics analysis packages: Most popular packages for analysis of pro- 
tein sequences and other biological data are supported. These packages include 
both Web-based and/or locally installed versions of WU-BLAST [30], Gapped 
BLAST [31], FASTA, CLUSTAL W [32], HMMER, BLOCKS, Profile Scan 
(PFSCAN) [33], NNPREDICT, PSORT, and many others. 

�9 Biological databases: Many popular data sources of biological information 
are also supported by the Kleisli system, including AceDB [18], Entrez [9], 
LocusLink, UniGene, dbSNP, OMIM, PDB, SCOP [34], TIGR, KEGG, and 
MEDLINE. For each of these sources, Kleisli typically provides many access 
functions corresponding to different capabilities of the sources. For example, 
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Kleisli provides about 70 different but systematically organized functions to 
access and extract information from Entrez. 

�9 Patent databases: Currently only access to the United States Patent and Trade- 
mark Office (USPTO)is supported. 

�9 Interfaces: The Kleisli system also provides means for parsing input and writ- 
ing output in HTML and XML formats. In addition, programming libraries 
are provided for Java and Perl to interface directly to Kleisli in a fashion sim- 
ilar to JDBC and ODBC. A graphical user interface called Discovery Builder 
is also available. 

It is generally easy to develop a wrapper for a new data source, or modify an 
existing one, and insert it into Kleisli. There is no impedance mismatch between 
the data model supported by Kleisli and the data model necessary to capture the 
data source. The wrapper is therefore often a very lightweight parser that simply 
parses records in the data source and prints them out in Kleisli's simple data 
exchange format. 

Example 6.6.1 Let us consider the webomim-get-detail function used in 
Example 6.4.4. It uses an OMIM identifier to access the OMIM database and 
returns a set of objects matching the identifier. The output is of type" 

{(#uid- num, #title- string, #gene_map_locus- {string}, 
#alternative_titles- {string}, #allelic_variants- {string}) } 

Note that this is a nested relation: It consists of a set of records, and each 
record has three fields that are also of set types, namely #gene_map_ locus ,  
#alternative_titles, and #allelic_variants. This type of output 
would definitely present a problem if it had to be sent to a system based on the flat 
relational model, as the information would have to be re-arranged in these three 
fields to be sent into separate tables. 

Fortunately, such a nested structure can be mapped directly into Kleisli's ex- 
change format. The wrapper implementor would only need to parse each matching 
OMIM record and write it out in a format as illustrated in the following: 

{(#uid- 189965, 
#title- "CCAAT/ENHANCER-BINDING PROTEIN, BETA; CEBPB", 

#gene_map_locus- "20q13.1", 

#alternative_titles- {"C/EBP-BETA", 
"INTERLEUKIN 6-DEPENDENT DNA- 

BINDING PROTEIN; IL6DBP", 
"LIVER ACTIVATOR PROTEIN; LAP", 



#allelic variants- 

"LIVER-ENRICHED TRANSCRIPTIONAL 

ACTIVATOR PROTEIN", 

"TRANSCRIPTION FACTOR 5; TCF5"}, 
{})} 

Instead of needing to create separate tables to keep the sets nested inside each 
record, the wrapper simply prints the appropriate set brackets { and ) to enclose 
these sets. Kleisli will automatically deal with them as they were handed over by 
the wrapper. This kind of parsing and printing is extremely easy to implement. 
Figure 6.4 shows the relevant chunk of Perl codes in the OMIM wrapper imple- 
menting webomim- ge t-de tai i. 

6.7 OPTIMIZATIONS 

A feature that makes Oracle and Sybase much more productive to use than a raw 
file system is the availability of a high-level query language. Such a query language 
allows users to express their needs in a declarative, logical way. All low-level details 
such as opening files, handling disk blocks, using indices, decoding record and field 
boundaries, and so forth are hidden away and are automatically taken care of. 
However, there are two prices to pay, one direct and one indirect. The direct one 
is that if a high-level query is executed naively, the performance may be poor. The 
same high-level command often can be executed in several logically equivalent 
ways. However, which of these ways is more efficient often depends on the state 
of the data. A good optimizer can take the state of the data into consideration and 
pick the more efficient way to execute the high-level query. The indirect drawback 
is that because the query language is at a higher level, certain low-level details 
of programming are no longer expressible, even if these details are important to 
achieving better efficiency. However, a user who is less skilled in programming is 
now able to use the system. Such a user is not expected to produce always efficient 
programs. A good optimizer can transform inefficient programs into more efficient 
equivalent ones. Thus, a good optimizer is a key ingredient of a decent database 
system and of a general data integration system that supports ad hoc queries. 

The Kleisli system has a fairly advanced query optimizer. The optimizations 
provided by this optimizer include (1) monadic optimizations that are derived 
from the equational theory of monads, such as vertical loop fusion; (2) context- 
sensitive optimizations, which are those equations that are true only in special 
contexts and that generally rely on certain long-range relationships between sub- 
expressions, such as the absorption of sub-expressions in the then-branch of 
an i f - t h e n - e l s e  construct that are equivalent to the condition of the construct; 
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FIGURE 

#!/usr/bin/perl 

# 

.... stuff for connecting to OMIM omitted... 

.... <CMD> is the input stream to be parsed... 

# 

# default values 

$section = "none"; $state = 0; $id = ""; 

the main program 

print "{\n"; 

while (<CMD>) { 

chomp; 

if (/dispomim.cgi.cmd=entry.*id=([0-9]+)/) { 

$state = i; $id = $I; $section = "title"; $1ine = ""; } 

# look for keywords to being parsing sections 

elsif (($state==l) && (/a href=\"\" name=\"$id\_(.*?)\,'/)) { 

$section = "$i"; $1ine = $_; } 

# parse title 

elsif (($section eq "title") && (/<SPAN CLASS="H3"><font/)) { 

$title = $_; $title =- s/<.*?>//g; } 

# parse alternative titles 

elsif (($section eq "MIM") && (m-</p></em>(.*)</h4>-)) { 

Stmp = $I; @alts = split /<br>/, $tmp; $alternativeTitles = ""; 

foreach $x (@alts) { $alternativeTitles .= "\"$x\", "; } 

$alternativeTitles =~ s/, $//; } 

# parse gene map location 

elsif (($section eq "TEXT") && ($1ine =~ /^Gene map locus *(.*)/)){ 

$geneMapLocus = $I; $geneMapLocus =~ s/<.*?>//g; $1ine = ""; } 

# parsing for Allelic variants 

# each allelic varient will have it's own section 

# need to group the allelic variants accross sections 

elsif ($section eq "ALLELIC_VARIANTS") { SvariantTitle = ""; } 

elsif ($section =~ /AllelicVariant/) { 

$ = $1ine; s/<.*?>//g; s/.\d+ *//; $variantTitle .... \"$_\", "; } 

elsif (($state==l) && ($section eq "CREATION_DATE")) { 

$state = 0; $variantTitle =~ s/, $//; $variantTitle =~ s/\",/k"kn/g; 

The Perl code of the wrapper implementing the webomim-get-detail func- 
tion of Kleisli. It demonstrates the ease of developing wrappers for handling data 
sources that contain nested objects. 
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6.7.1 

(3) relational optimizations, which are optimizations relating to relational database 
sources such as the migration of projections, selections, and joins to the external 
relational database management system; and (4) many other optimizations such 
as parallelism, code motion, and selective introduction of laziness. 

Monadic Optimizations 
The restricted form of structural recursion corresponds to the presentation of 
monads by Kleisli [15, 16] and is expressed by the combinator U{ f(x) I x ~ R} 
obeying the following three equations: 

U { f ( x )  l x  E {}} - {} 

U {f(x)  l x  ~ {o}}- f(o) 

U {f(x)  l x  E A U B ) -  ( U  {f(x) lx ~ A}) u ( U  {f(x) lx ~ B}) 

This combinator is at the heart of the A/'TEC, the abstract representation of queries 
in the implementation of sSQL. It earns its central position in the Kleisli system 
because it offers tremendous practical and theoretical convenience. The direct 
correspondence in sSQL is: s e l e c t  y from R x, f (x) y. This combinator 
is a key operator in the library of complex object routines in Kleisli. All sSQL 
queries can be and are first translated into A/'TCC via Wadler's identities [15, 16]. 

The practical convenience of the U{ f(x) I x E R} combinator is best seen in 
query optimizations. 

A well-known optimization rule is vertical loop fusion [35], which corre- 
sponds to the physical notion of getting rid of intermediate data and the logical 
notion of quantifier elimination. Such an optimization on queries in the compre- 
hension syntax can be expressed informally as {e I G1, . . . ,  Gn, x E { e ' ]  H 1 ,  . . . ,  

Hm}, J1, ..., Jk} "~ {e[e'/x] [ G1, ..., Gn, H1, ..., Hm, Jl[e'/x], ..., Jk[e'/x]}. Such 
a rule in comprehension form is simple to grasp: The intermediate set built by 
the comprehension {e' [ H1, ..., Hm} is eliminated in favor of generating the x 
on the fly. In practice, the rule is quite messy to implement because the informal 
"..." denotes any number of generator-filters in a comprehension. An immediate 
implementation would involve a nasty traversal routine to skip over the non- 
applicable Gi t o  locate the applicable x ~ {e'[ /-/1, . . . ,  Hm} and Ji. The effect of 
the U{ f(x) I x ~ R} combinator on the optimization rule for vertical loop fusion 
is dramatic. This optimization is now expressed as {f(x) Ix ~ U{g(y) I y E R}} 

U{U{ f(x) Ix  ~ g(y)} I y ~ R}. The informal and troublesome "..." no longer 
appears. Such a rule can be coded straightforwardly in almost any implementation 
language. 
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To illustrate this point more concretely, it is necessary to introduce some detail 
from the implementation of the Kleisli system. Recall from the introductory section 
that Kleisli is implemented on top of SML. The type SYN of SML objects that 
represent queries in Kleisli is declared as: 

type VAR : int 

type SVR : in t 

type CO = ... 

datatype SYN = ... 

EmptySet 

SngSet of SYN 

UnionSet of SYN * SYN 

ExtSet of SYN * VAR * SYN 

(* Variables, represented 

by int *) 

(* Server connections, 

represented by int *) 

(* Representation of 

complex objects *) 

(* { } *) 

(* { E } *) 

(* E1 U E2 *) 

(* U{ E1 1 \x <- E2 } *) 

IfThenElse of SYN * SYN * SYN (* if E1 then E2 else E3*) 

Read of SVR * real * SYN (* process E using S, 

the real is the request priority assigned by 

optimizer* ) 

Variable VAR (* x *) 

Binary (CO * CO-> CO) * SYN * SYN (* Construct for 

caching static objects. This allows the optimizer 

to insert some codes for doing dynamic 

optimization *) 

All SML objects that represent optimization rules in Kleisli are functions and have 
type RULE: 

type RULE = SYN -> SYN option 

If an optimization rule r can be successfully applied to rewrite an expression e to 
an expression e', then r(e) - S0ME(e'). If it cannot be successfully applied, then 
r (e) - NONE. 

Now the vertical loop fusion has a very simple implementation. 

Example 6. 7.1 Vertical loop fusion. 

fun Vertfusion (ExtSet (El, x, ExtSet (E2,y, E3) ) ) 

: SOME(ExtSet (ExtSet(El,x E2) ,y, E3)) 

I Vertfusion _ : NONE 
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6.7.2 Context-Sensitive Optimizations 
The Kleisli optimizer has an extensible number of phases. Each phase is associated 
with a rule base and a rule-application strategy. A large number of rule-application 
strategies are supported, such as BoeeomUpOnce, which applies rules to rewrite 
an expression tree from leaves to root in a single pass. By exploiting higher-order 
functions, these rule-application strategies can be decomposed into a traversal 
component common to all strategies and a simple control component special for 
each strategy. In short, higher-order functions can generate these strategies ex- 
tremely simply, resulting in a small optimizer core. To give some ideas on how 
this is done, some SML code fragments from the optimizer module mentioned are 
presented on the following pages. 

The traversal component is a higher-order function shared by all strategies: 

val Decompose: (SYN-> SYN) -> SYN-> SYN 

Recall that SYN is the type of SML object that represents query expressions. The 
Decompose function accepts a rewrite rule r and a query expression Q. Then 
it applies r to all immediate subtrees of Q to rewrite these immediate subtrees. 
Note that it does not touch the root of Q and it does not traverse Q- - i t  just 
non-recursively rewrites immediate subtrees using r. It is, therefore, very straight- 
forward and can be expressed as follows: 

fun Decompose r (SngSet N) = SngSet(r N) 

I Decompose r (UnionSet(N,M)) = UnionSet(r N, r M) 

I Decompose r (ExtSet (N, x, M) ) = ExtSet(r N, x, r M) 

I . . . 

A rule-application strategy S is a function having the following type: 

val S: RULEDB-> SYN-> SYN 

The precise definition of the type RULEDB is not important at this point and is 
deferred until later. Such a function takes in a rule base R and a query expression 
Q and optimizes it to a new query expression Q' by applying rules in R according 
to the strategy S. 

Assume that P i c k :  RULEDB -> RULE is an SML function that takes a rule 
base R and a query expression Q and returns NONE if no rule is applicable, and 
SOME(Q') if some rule in R can be applied to rewrite Q to Q'. Then the control 
components of all the strategies mentioned earlier can be generated easily. 
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Example 6.7.2 The BottomUpOnce strategy applies rules in a leaves-to-root 
pass. It tries to rewrite each node at most once as it moves toward the root of the 
query expression. Here is its control component: 

fun BottomUpOnce RDB Qry = 

let fun Pass SubQry = 

let val BetterSubQry = Decompose Pass SubQry 

in case Pick RDB BetterSubQry 

of SOME EvenBetterSubQry => EvenBetterSubQry 

I NONE => BetterSubQry end 

in Pass Qry end 

The following class of rules requires the use of multiple rule-application strategies. 
The scope of rules like the vertical loop fusion in the previous section is over the 
entire query. In contrast, this class of rules has two parts. The inner part is context 
sensitive, and its scope is limited to certain components of the query. The outer 
part scopes over the entire query to identify contexts where the inner part can 
be applied. The two parts of the rule can be applied using completely different 
strategies. 

A rule base RDB is represented in the system as an SML record of type: 

type RULEDB = { 

DoTrace: bool ref, 

Trace. (rulename -> SYN -> SYN -> unit) ref, 

Rules: (rulename * RULE) list ref } 

The mul es  field of RDB stores the list of rules in RDB together with their names. 
The T r a c e  field of RDB stores a function f that is to be used for tracing the usage 
of the rules in RDB. The moTrace  field of RDB stores a flag to indicate whether 
tracing is to be done. If tracing is indicated, then whenever a rule of name N in 
RDB is applied successfully to transform a query Q to Q' ,  the trace function is 
invoked as f N Q Q' to record a trace. Normally, this simply means a message 
like " Q  is rewritten to Q' using the rule N" is printed. However, the trace function 
f is allowed to carry out considerably more complicated activities. 

It is possible to exploit trace functions to achieve sophisticated transforma- 
tions in a simple way. An example is the rule that rewrites if e I then ... e I ... 
else e 3 to if el then ... true ... else e 3. The inner part of this rule rewrites 
ez to t r u e .  The outer part of this rule identifies the context and scope of the 
inner part of this rule: limited to the then-branch.  This example is very intuitive 
to a human being. In the then-branch  of a conditional, all sub-expressions iden- 
tical to the test predicate of the conditional must eventually evaluate to t r u e .  
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However, such a rule is not so straightforward to express to a machine. The infor- 
mal "..." are again in the way. Fortunately, rules of this kind are straightforward 
to implement in Kleisli. 

Example 6. 7.3 The if-then-else absorption rule is expressed by the A b s o r b T h e n  

rule below. The rule has three clauses. The first clause says the rule should not 
be applied to an I f T h e n E l s e  whose test predicate is already a Boolean constant 
because it would lead to non-termination otherwise. The second clause says the 
rule should be applied to all other forms of I f T h e n E l s e .  The third clause says 
the rule is not applicable in any other situation. 

fun AbsorbThen (IfThenElse(Bool ..... )) = NONE 

AbsorbThen (IfThenElse(E1,E2,E3)) = 

let fun Then E : if SyntaxTools.Equiv E1 E then 

SOME (Bool true) else NONE 

in case ContextSensitive Then TopDownOnce E2 

of SOME E2' :> IfThenElse(E1,E2',E3) 

I NONE :> NONE end 
AbsorbThen : NONE 

m 

The second clause is the meat of the implementation. The inner part of the rewrite 
if e I then ... e I ... else e 3 to if e I then ... true ... else e 3 is captured by 
the function Then, which rewrites any e identical to el to t r u e .  This function is 
then supplied as the rule to be applied using the TopDownOnce strategy within the 
scope of the then-branch ... e~ ... using the c o n t e x t S e n s i t i v e  rule generator 
given as follows. 

fun ContextSensitive Rule Strategy Qry = 

let val Changed = ref false 

val RDB = { 

DoTrace = ref true, 

Trace = ref (fn => fn 

Rules = ref [ ( .... , Rule) ] } 

(* This flag is set if 

Rule is applied *) 

(* Set up a context- 

sensitive rule base *) 

=> fn _ => Changed -= true) 

(* Changed is true 

if Rule is used *) 

val OptimizedQry = Strategy RDB Qry 

(* Apply Rule using 

Strategy. *) 

in if !Changed then SOME OptimizedQry else NONE end 
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6.7.3 

This ContextSensitive rule generator is re-used in many other context- 
sensitive optimization rules, such as the rule for migrating projections to external 
relational database systems to be presented shortly. 

Relational Optimizations 
Relational database systems are the most powerful data sources to which Kleisli 
interfaces. These database systems are equipped with the ability to perform sophis- 
ticated transformations expressed in SQL. A good optimizer should aim to migrate 
as many operations in Kleisli to these systems as possible. There are four main op- 
timizations that are useful in this context: the migration of projections, selections, 
and joins on a single database; and the migration of joins across two databases. 
The Kleisli optimizer has four different rules to exploit these four opportunities. 

A special case of the rule for migrating P is to rewrite s e l e c t  x . n a m e  
from (process "select * from T" using A) x to select x.name 

from (process "select name from T" using A) x, where process 

Q u s i n g  A denotes sending an SQL query Q tO a relational database A. In the 
original query, the entire table T has to be retrieved. In the rewritten query, only 
one column of that table has to be retrieved. More generally, if x is from a rela- 
tional database system and every use of x is in the context of a field projection 
x.  1, these projections can be pushed to the relational database so that unused 
fields are not retrieved and transferred. 

Example 6.7.4 The rule for migrating projections to a relational database is 
implemented by l v i i g r aeep ro j  in this example. The rule requires a function 
F u l l y p r o j  e c e e d  x N that traverses an expression N to determine whether x is 
always used within N in the context of a field projection and to determine what 
fields are being projected; it returns NONE if x is not always used in such a context; 
otherwise, it returns SOME L, where the list L contains all the fields being projected. 
This function is implemented in a simple way using the ContextSensi tive rule 
generator from Example 6.7.3. 

fun FullyProjected x N - 

let val (Count, Projs) : (ref 0, ref []) 

fun FindProjs (Variable y) = (if x = y then inc 

Count else () ; NONE) 

I mindProjs (mroj (L, Variable y)) = 

(if x = y then Projs .: L -- (!Projs) else (); 

NONE ) 

I Findmrojs _ = NONE 
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in ContextSensitive FindProjs BottomUpOnce N; 

if length (!Projs) = !Count then SOME (!Projs) else 

NONE 

end 

The MigrateProj rule is defined below. The function SQL. PushProj is one of 
the many support routines available in the current release of Kleisli that handle 
manipulation of SQL queries and other SYN abstract syntax objects. 

fun MigrateProj (ExtSet (N, x, Read (S, p, String M))) = 

if Annotations. IsSQL S (* test if S connects to a 

SQL server *) 

then case FullyProjected x N (* test if x is always 

in a projection *) 

of SOME Projs => SOME (ExtSet (N, x, Read (S, p, 

String (SQL.PushProj Projs M)))) 

I NONE => NONE 

else NONE 

I MigrateProj _ : NONE 

Besides the four migration rules mentioned previously, Kleisli has various other 
rules, including reordering joins on two relational databases, parallelizing queries, 
and large-scale code motion, the description of which is omitted in the chapter 
due to space constraints. 

6.8 USER INTERFACES 

Kleisli is equipped with application programming interfaces for use with Java and 
Perl. It also has a graphical interface for non-programmers. These interfaces are 
described in this section. 

6.8.1 Programming Language Interface 
The high-level query language, sSQL, of the Kleisli system was designed to express 
traditional (nested relational) database-style queries. Not every query in bioinfor- 
matics falls into this class. For these non-database-style queries, some other pro- 
gramming languages can be a more convenient or more efficient means of imple- 
mentation. The Pizzkell suite [19] of interfaces to the Kleisli exchange format was 
developed for various popular programming languages. Each of these interfaces in 
the Pizzkell suite is a library packag e for parsing data in Kleisli's exchange format 
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into an internal object of the corresponding programming language. It also serves 
as a means for embedding the Kleisli system into that programming language so 
that the full power of Kleisli is made available within that programming language. 
The Pizzkell suite currently includes CPL2Perl and CPL2Java, for Perl and Java. 

In contrast to sSQL in Kleisli, which is a high-level interface that comes with a 
sophisticated optimizer and other database-style features, CPL2Perl has a different 
purpose and is at a lower level. Whereas sSQL is aimed at extraction, integration, 
and preparation of data for analysis, CPL2Perl is intended to be used for im- 
plementing analysis and textual formatting of the prepared data in Perl. Thus, 
CPL2Perl is a Perl module for parsing data conforming to the data exchange 
format of Kleisli into native Perl objects. 

The main functions in CPL2Perl are divided into three packages: 

1. The RECORD package simulates the record data type of the Kleisli exchange 
format by using a reference of Perl's hash. Some functions are defined in this 
package: 

�9 New is the constructor of a record. For example, to create a record 
such as ( #anno_name �9 "db_xref", #descr- "taxon- 10090" ) 

in a Perl program, one writes: 

$rec = RECORD->new ( "anno_name", 

"db_xref", "descr","taxon-10090") ; 

where $rec becomes the reference of this record in the Perl program. 

�9 Pro j e c t  gets the value of a specified field in a record. For example, 

$ r e c - > P r o j e c t  ( "desc r "  ) �9 

will return the value of the field # d e s c r  in the record referenced by 
Srec  in the Perl program. 

2. The LIST package simulates the list, set, and bag data type in the Kleisli data 
exchange format. These three bulk data types are to be converted as a reference 
of Perl's list. Its main function is" 

�9 new is the constructor of bulk data such as a list, a bag, or a set. It 
works the same way as a list initialization in Perl" 

$i = LIST->new ( "tom", "jerry" ) ; 

where $1 will be the reference of this list in the Perl program. 

3. The Cvuo package provides the interface to read data directly from a Kleisli- 
formatted data file or pipe. It supports both eager and lazy access methods. 
Some functions in this package are: 
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�9 Openl opens the specified Kleisli-formatted data file and returns 
the handle of this file in Perl. It supports all the input-related features 
of the usual open  operation of Perl, including the use of pipes. 
For example, the following expression opens a Kleisli-formatted file 
"s equenc e s. va I ": 

$hd = CPLIO->Openl  ( " s e q u e n c e s  . v a l "  ) ; 

�9 O p e n l a  is another version of the Openl  function, which can take a 
string as input stream. The first parameter specifies the child process 
to execute and the second parameter is the input string. An example 
that calls Kleisli from CPL2Perl to extract accession numbers from 
a sequence file is expressed as follows: 

$cmd = qq{ 

create view X from sequences using stdin; 

select x.accession from X x; }; 

$a= CPLIO->Openla ( "./ssql" , $cmd); 

�9 Open2 differs from Openla in that it allows a program to com- 
municate in both directions with Kleisli or other systems. It is pa- 
rameterized by the Kleisli or other systems to call. It returns a list 
consisting of a reference of CvLIO object and an input stream that 
the requests can be sent into. For example: 

($a, Sb) = CLPIO->Open2("./ssql") ; 

print $b $cmdl; flush $b; $res = $a->Parse; 

�9 o o 

print $b $cmd2; flush $b; $res = $a->Parse; 

�9 Parse is a function that reads all the data from an opened file until 
it can assemble a complete object or a semicolon (;) is found. The 
return value will be the reference of the parsed object in Perl. For 
example, printing the values of the field # a c c e s s  i on of an opened 
file may be expressed by: 

$set = $hd->Parse; 

foreach $rec (@{$set} ) { 

$n = $rec->Project ("accession") ; 

print "$n\n"; } 

�9 LazyRead is a function that reads data lazily from an opened file. 
This function is used when the data type in the opened file is a set, a 
bag, or a list. This function only reads one element into memory at a 
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time. Thus, i f theopened f i le isavery bigset, LazyRead i s jus t the  
right ~nc t ion to  accesstherecordsand printaccession numbers: 

while (i) { 

$rec = $hd->LazyRead; last if ($rec eq .... ); 

$n = $rec->mroject("accession"); 

print "$n\n"; } 

The use of CPL2Perl for interfacing Kleisli to the Graphviz system is demon- 
strated in the context of the Protein Interaction Extraction System described in a 
paper by Wong [36]. Graphviz [37] is a system for automatic layout of directed 
graphs. It accepts a general directed graph specification, which is in essence a list 
of arcs of the form x -+ y, which specifies an arc is to be drawn from the node x 
to the node y. 

Example 6.8.1 Assume that Kleisli produces a file $SPEC of type { ( # a c t o r :  
string, #interaction: string, #patient: string)} which describesa 
protein interaction pathway. The records express that an actor inhibits or activates 
a patient. The relevant parts of a Perl implementation of the module MkGi f that 
accepts this file, converts it into a directed graph specification, invokes Graphviz 
to layout, and draws it as a GIF file $GIF using CPL2Perl is expressed as follows: 

use cpliperl; 

$a = CPLIO->Openl ("$SPEC"); 

open (DOT, "I ./dot -Tgif > $GIF"); 

print DOT "digraph aGraph {in"; 

while (i) { 

$rec = $a->LazyRead; last if ($rec eq .... ); 

$start : $rec->mroject ("actor"); 

Send = $rec->Project ("patient"); 

$type = $rec->Project ("interaction"); 

if ($type eq "inhibit") { 

$edgecolor = "red"; } 

else { 

$edgecolor : "green"; } 

Sedge = "[color = $edgecolor]"; 

print DOT " $start-> Send Sedge;In"; } 

print DOT "};\n"; 

$a->Close; 

close (DOT); 
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6.8.2 

The first three lines establish the connections to the Kleisli file $SPEC and to 
the Graphviz program dot .  The next few lines use the LazyRead and P r o j e c t  
functions of CPL2Perl to extract each interaction record from the file and to format 
it for Graphviz to process. Upon finishing the layout computation, Graphviz draws 
the interaction pathway into the file $GIF. 

This example, though short, demonstrates how CPL2Perl smoothly integrates 
the Kleisli exchange format into Perl. This greatly facilitates both the development 
of data drivers for Kleisli and the development of downstream processing (such 
as pretty printing) of results produced by Kleisli. 

Graphical Interface 
The Discovery Builder is a graphical interface to the Kleisli system designed for 
non-programmers by geneticXchange, Inc. This graphical interface facilitates the 
visualization of the source data as required to formulate the queries and generates 
the necessary sSQL codes. It allows users to see all available data sources and their 
associated meta-data and assists them in navigating and specifying their query on 
these sources with the following key functions: 

�9 A graphical interface that can see all the relevant biological data sources, 
including meta-data--tables, columns, descriptions, etc.--and then construct 
a query as if the data were local 

�9 Add new wrappers for any public or proprietary data sources, typically within 
hours, and then have them enjoined in any series of ad hoc queries that can 
be created 

�9 Execute the queries, which may join many data sources that can be scattered 
all over the globe, and get fresh result data quickly 

The Discovery Builder interface is presented in Figure 6.5. 

6.9 OTHER DATA INTEGRATION TECHNOLOGIES 

The brief description of several other approaches to bioinformatics data inte- 
gration problems emphasizes Kleisli's characteristics. The alternatives include Se- 
quence Retrieval System (SRS) [38], DiscoveryLink [23], and OPM [22]. 

6.9.1 SRS 
SRS [38] (also presented in Chapter 5) is marketed by LION Bioscience and is 
arguably the most widely used database query and navigation system for the life 
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6.5 

FIGURE 

The Discovery Builder graphical interface to Kleisli. 

science community. It provides easy-to-use graphical user interface access to a 
broad range of scientific databases, including biological sequences, metabolic path- 
ways, and literature abstracts. SRS provides some functionalities to search across 
public, in-house and in-licensed databases. To add a new data source into SRS, 
the data source is generally required to be available as a flat file, and a description 
of the schema or structure of the data source must be available as an Icarus script, 
which is the special built-in wrapper programming language of SRS. The notable 
exception to this flat file requirement on the data source is when the data source 
is a relational database. SRS then indexes this data source on various fields parsed 
and described by the Icarus script. A biologist then accesses the data by supplying 
some keywords and constraints on them in the SRS query language, and all records 
matching those keywords and constraints are returned. The SRS query language 
is primarily a navigational language. This query language has limited data joining 
capabilities based on indexed fields and has limited data restructuring capabili- 
ties. The results are returned as a simple aggregation of records that match the 
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search constraints. In short, in terms of querying power, SRS is essentially an in- 
formation retrieval system. It brings back records matching specified keywords 
and constraints. These records can contain embedded links a user can follow in- 
dividually to obtain deeper information. However, it does not offer much help in 
organizing or transforming the retrieved results in a way that might be needed for 
setting up an analytical pipeline. There is also a Web browser-based interface for 
formulating SRS queries and viewing results. In fact, this interface of SRS is often 
used by biologists as a unified front end to access multiple data sources indepen- 
dently, rather than learning the idiosyncrasies of the original search interfaces of 
these data sources. For this reason, SRS is sometimes considered to serve "more of 
a user interface integration role rather than as a true data integration too1"[39]. 

In summary, SRS has two main strengths. First, because of the simplicity of 
flat file indexing, adding new data sources into the system with the Icarus script- 
ing language is easy. In fact, several hundred data sources have been incorporated 
into SRS to date. Second, it has a nice user interface that greatly simplifies query 
formulation, making the system usable by a biologist without the assistance of 
a programmer. In addition, SRS has an extension known as Prisma designed for 
automating the process of maintaining an SRS warehouse. Prisma integrates the 
tasks of monitoring remote data sources for new data sets and downloading and 
indexing such data sets. On the other hand, SRS also has some weaknesses. First, 
it is basically a retrieval system that returns entries in a simple aggregation. To 
perform further operations or transformations on the results, a biologist has to 
do that by hand or write a separate post-processing program using some exter- 
nal scripting language like C or Perl, which is cumbersome. Second, its princi- 
pally flat-file based indexing mechanism rules out the use of certain remote data 
sources~in particular, those that are not relational databases~and does not pro- 
vide for straightforward integration with dynamic analysis tools. However, this 
latter shortcoming is mitigated by the Scout suite of applications marketed by 
LION Bioscience that are specifically designed to interact with SRS. 

D i s c o v e r y L i n k  

DiscoveryLink [23] (also presented in Chapter 11) is an IBM product and, in princi- 
ple, it goes one step beyond SRS as a general data integration system for biomedical 
data. The first thing that stands out--when DiscoveryLink is compared to SRS and 
more specialized integration solutions like EnsEMBL and GenoMax~is  the pres- 
ence of an explicit data model. This data model dictates the way DiscoveryLink 
users view the underlying data, the way they view results, as well as the way they 
query the data. The data model is the relational data model [17]. The relational 
data model is the de facto data model of most commercial database management 
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systems, including the IBM's DB2 database management system, upon which Dis- 
coveryLink is based. As a result, DiscoveryLink comes with a high-level query 
language, SQL, that is a standard feature of all relational database management 
systems. This gives DiscoveryLink several advantages over SRS. First, not only 
can users easily express SQL queries that go across multiple data sources, which 
SRS users are able to do, but they can also perform further manipulations on the 
results, which SRS users are unable to do. Second, not only are the SQL queries 
more powerful and expressive than those of SRS, the SQL queries are also auto- 
matically optimized by DB2. Query optimization allows users to concentrate on 
getting their queries right without worrying about getting them fast. 

However, DiscoveryLink still has to overcome difficulties. The first reason is 
that DiscoveryLink is tied to the relational data model. This implies that every 
piece of data it handles must be a table of atomic objects, such as strings and 
numbers. Unfortunately, most of the data sources in biology are not that simple 
and are deeply nested. Therefore, there is some impedance mismatch between these 
sources and DiscoveryLink. Consequently, it is not straightforward to add new 
data sources or analysis tools into the system. For example, to put the Swiss-Prot 
[40] database into a relational database in the third normal form would require 
breaking every Swiss-Prot record into several pieces in a normalization process. 
Such a normalization process requires a certain amount of skill. Similarly, querying 
the normalized data in DiscoveryLink requires some mental and performance 
overhead, as the user needs to figure out which part of Swiss-Prot has gone to 
which of the pieces and to join some of the pieces back again to reconstruct the 
entry. The second reason is that DiscoveryLink supports only wrappers written in 
C++, which is not the most suitable programming language for writing wrappers. 
In short, it is not straightforward to extend DiscoveryLink with new sources. In 
addition, DiscoveryLink does not store nested objects in a natural way and is very 
limited in its capability for handling long documents. It also has limitations as a 
tool for creating and managing data warehouses for biology. 

Object-Protocol Model (OPM) 
Developed at Lawrence-Berkeley National Labs, OPM [22] is a general data inte- 
gration system. OPM was marketed by GeneLogic, but its sales were discontinued 
some time ago. It goes one step beyond DiscoveryLink in the sense that it has a 
more powerful data model, which is an enriched form of the entity-relationship 
data model [41]. This data model can deal with the deeply nested structure of 
biomedical data in a natural way. Thus, it removes the impedance mismatch. This 
data model is also supported by an SQL-like query language that allows data to be 
seen in terms of entities and relationships. Queries across multiple data sources, 
as well as transformation of results, can be easily and naturally expressed in this 
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query language. Queries are also optimized. Furthermore, OPM comes with a 
number of data management tools that are useful for designing an integrated data 
warehouse on top of OPM. 

However, OPM has several weaknesses. First, OPM requires the use of a global 
integrated schema. It requires significant skill and effort to design a global inte- 
grated schema well. If a new data source needs to be added, the effort needed to re- 
design the global integrated schema potentially goes up quadratically with respect 
to the number of data sources already integrated. If an underlying source evolves, 
the global integrated schema tends to be affected and significant re-design effort 
may be needed. Therefore, it may be costly to extend OPM with new sources. Sec- 
ond, OPM stores entities and relationships internally using a relational database 
management system. It achieves this by automatically converting the entities and 
relationships into a set of relational tables in the third normal form. This con- 
version process breaks down entities into many pieces when stored. This process 
is transparent to OPM users, so they can continue to think and query in terms 
of entities and relationships. Nevertheless, the underlying fragmentation often 
causes performance problems, as many queries that do not involve joins at the 
conceptual level of entities and relations are mapped to queries that evoke many 
joins on the physical pieces to reconstruct broken entities. Third, OPM does not 
have a simple format to exchange data with external systems. At one stage, it 
interfaces to external sources using the Common Object Request Broker Architec- 
ture (CORBA). The effort required for developing CORBA-compliant wrappers is 
generally significant [42]. Furthermore, CORBA is not designed for data-intensive 
applications. 

6.10 CONCLUSIONS 

In the era of genome-enabled, large-scale biology, high-throughput technologies 
from DNA sequencing, microarray gene expression and mass spectroscopy, to 
combinatory chemistry and high-throughput screening have generated an unprece- 
dented volume and diversity of data. These data are deposited in disparate, special- 
ized, geographically dispersed databases that are heterogeneous in data formats 
and semantic representations. In parallel, there is a rapid proliferation of computa- 
tional tools and scientific algorithms for data analysis and knowledge extraction. 
The challenge to life science today is how to process and integrate this massive 
amount of data and information for research and discovery. The heterogeneous 
and dynamic nature of biomedical data sources presents a continuing challenge to 
accessing, retrieving, and integrating information across multiple sources. 

Many features of the Kleisli system [2, 5, 43] are particularly suitable for au- 
tomating the data integration process. Kleisli employs a distributed and federated 
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approach to access external data sources via the wrapper layer, and thus can access 
the most up-to-date data on demand. Kleisli provides a complex nested internal 
data model that encompasses most of the current popular data models including 
flat files, HTML, XML, and relational databases, and thus serves as a natural data 
exchanger for different data formats. Kleisli offers a robust query optimizer and 
a powerful and expressive query language to manipulate and transform data, and 
thus facilitates data integration. Finally, Kleisli has the capability of converting re- 
lational database management systems such as Sybase, MySQL, Oracle, DB2, and 
Informix into nested relational stores, thus enabling the creation of robust ware- 
houses of complex biomedical data. Leveraging the capabilities of Kleisli leads to 
the development of the query scripts that give us a high-level abstraction beyond 
low-level codes to access a combination of the relevant data and the right tools to 
solve the right problem. 

Kleisli embodies many of the advances in database query languages and in 
functional programming. The first is its use of a complex object data model in 
which sets, bags, lists, records, and variants can be flexibly combined. The second 
is its use of a high-level query language that allows these objects to be easily manip- 
ulated. The third is its use of a self-describing data exchange format, which serves 
as a simple conduit to external data sources. The fourth is its query optimizer, 
which is capable of many powerful optimizations. It has had significant impact on 
data integration in bioinformatics. Indeed, since the early Kleisli prototype was 
applied to bioinformatics, it has been used efficiently to solve many bioinformatics 
data integration problems. 
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CHAPTER 

Complex Query 
Form u lation Over 

Diverse Information 
Sources in TAMBIS 

Robert Stevens, Carole Goble, Norman W. Paton, 
Sean Bechhofer, Gary Ng, Patricia Baker, and Andy Brass 

Molecular biology is a data-rich discipline that has produced a vast quantity of 
sequence and other data. Most of the resulting data sets are held in independently 
developed databanks and are acted upon by separate analysis tools. These in- 
formation sources and tools are autonomous, distributed, and have differing call 
interfaces. As such, they manifest classical syntactic and semantic heterogeneity 
problems [ 1]. 

Many bioinformatics tasks are supported by individual sources. However, 
biologists increasingly wish to ask complex questions that span a range of the 
available sources [2]. This places barriers between a biologist and the task to be 
accomplished; the biologist has to know what sources to use, the locations of the 
sources, how to use the sources (both syntactically and their semantics), and how 
to transfer data between the sources. 

This chapter presents an approach to solving these problems called Transpar- 
ent Access to Multiple Bioinformatics Information Sources (TAMBIS) [3]. This 
chapter reports on the first version of the TAMBIS system, which was developed 
between 1996 and 2000. A second version extends and develops this first version, 
addressing some of the problems recognized in the approach. This new version is 
introduced in Section 7.5. The TAMBIS approach attempts to avoid the pitfalls de- 
scribed previously by using an ontology of molecular biology and bioinformatics 
to manage the presentation and usage of the sources. An ontology is a description 
of the concepts, and the relationships between those concepts, within a domain. 
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The ontology allows TAMBIS- 

�9 to provide a homogenizing layer over the numerous databases and analysis 
tools 

�9 to manage the heterogeneities between the data sources 

�9 to provide a common, consistent query-forming user interface that allows 
queries across sources to be precisely expressed and progressively refined 

This ontology is the backbone of the TAMBIS system; it is what the user interacts 
with to form questions. It allows the same style of query and terms to be used 
across diverse resources, and it also manages the answering of the query itself. 

A concept is a description of a set of instances, so a concept or description 
can also be viewed as a query. The TAMBIS system is used for retrieving instances 
described by concepts in the model. This contrasts with queries phrased in terms 
of the structures used to store the data, as are used in conventional database 
query environments. This approach allows a biologist to ask complex questions 
that access and combine data from different sources. However, in TAMBIS, the 
user does not have to choose the sources, identify the location of the sources, 
express requests in the language of the source, or transfer data items between 
s o u r c c s .  

7.1 

FIGURE 
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results 



Figure 7.1 shows how a query is constructed and processed through the 
TAMBIS system. The steps in processing a TAMBIS query are as follows: 

1. A query is formulated in terms of the concepts and relationships in the ontol- 
ogy using the visual Conceptual Query Formulation Interface. This interface 
allows the ontology to be browsed by users and supports the construction of 
complex concept descriptions that serve as queries. The output of the query 
formulation process is a source independent conceptual query. The query for- 
mulation interface makes extensive use of the TAMBIS Ontology Server, which 
not only stores the ontology but supports various reasoning services over the 
ontology. These reasoning services serve, for example, to ensure that queries 
constructed using the query formulation interface are biologically meaningful 
with respect to the TAMBIS ontology. 

2. Given a query, TAMBIS must identify the sources that can be used to answer 
the query and construct valid and efficient plans for evaluating it given the 
facilities provided by the relevant sources. The source selection and query plan- 
ning process makes extensive use of the Sources and Services Model (SSM), 
which associates concepts and relationships from the Ontology with the ser- 
vices provided by the sources. The output of the source selection and query 
planning process is a source dependent query plan that describes the sources 
to be used and the order in which calls should be made to the sources. 

3. The query plan execution process takes the plan provided by the planner 
and executes that plan over the wrapped sources to yield an answer to the 
query. Sources are wrapped so they can be accessed in a syntactically con- 
sistent manner. In version one of TAMBIS, each source is represented as a 
collection of function calls, which are evaluated by the collection program- 
ming language (CPL) [4]. The sources used in TAMBIS 1.0 were Swiss-Prot, 
ENZYME, CATH (Classes, Architecture, Topology, Homology), Basic Local 
Alignment Search Tool (BLAST), and PROSITE. 

The remainder of this Chapter is organized as follows. Section 7.1 gives a brief 
overview of the TAMBIS ontology, describing its scope and the language in which 
it is implemented. Section 7.2 describes how users interact with TAMBIS, in par- 
ticular how the ontology is explored and how queries are constructed using the 
interface from Section 7.2. Section 7.3 describes how queries constructed using the 
interface from Section 7.2 are evaluated over the individual sources. Section 7.4 
describes work in several areas related to TAMBIS and describes how TAM- 
BIS compares to alternative or complementary proposals. Section 7.5 considers 
issue relating to query construction and source integration raised by experience in 
TAMBIS and how these are addressed in TAMBIS 2.0. 
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7.1 THE ONTOLOGY 

An ontology is a description of the concepts and their relationships within a 
domain. An ontology is a mechanism by which knowledge about a domain can be 
captured in computational form and shared within a community [5]. The TAMBIS 
ontology describes both molecular biology and bioinformatics tasks. 

A concept represents a class of individuals within a domain. Concepts such 
as P r o t e i n  and N u c l e i c  a c i d  are part of the world of molecular biology. An 
A c c e s s i o n  number ,  which acts as a unique identifier for an entry in an informa- 
tion source, lies outside this domain but is essential for describing bioinformatics 
tasks in molecular biology. The TAMBIS ontology contains only concepts and the 
relationships between those concepts. Individuals that are members of concept 
classes (P21598 is an individual of the class A c c e s s i o n  number)  do not ap- 
pear in the TAMBIS ontology. Such individuals are contained within the external 
resources over which TAMBIS answers queries. 

The TAMBIS ontology has been designed to cover the standard range of bioin- 
formatics retrieval and analysis tasks [2]. This means that a broad range of biology 
has been described. The model is, however, currently quite shallow; although the 
detail present is sufficient to allow descriptions of most retrieval tasks support- 
able using the integrated bioinformatics sources. In addition, precision can arise 
from the ability to combine concepts to create more specialized concepts (see 
Section 7.2.2). 

The model is centered upon the biopolymers P r o t e i n  and N u c l e i c  a c i d  
and their children, such as Enzyme, DNA, and RNA. Biological functions and pro- 
cesses are also present, so it is possible to describe, for example, the kinds of 
reactions that are catalyzed by an enzyme. Many tasks in bioinformatics involve 
comparing or identifying patterns in sequences. As a result, sequence components 
such as protein motifs and structure classifications are described. For example, 
a mot i f  is a pattern within a sequence that is generally associated with some 
biological function. The ontology thus supports the description of motifs and var- 
ious different kinds of motifs. Such descriptions are facilitated by the presence 
of a rich collection of relationships between concepts in the ontology. These ba- 
sic concepts are present in the is a hierarchy. Other relationships add richness 
to the model, so that a wide range of biological features can be described. For 
example, M o t i f  (and its children) can be components (parts of) P r o t e i n  or Nu- 
c l e i c  a c i d .  Other relationships capture associations to functions, processes, 
sub-cellular locations, similarities, and labels such as species name, gene names, 
protein names, and accession numbers. The model is described in more detail in 
an article in Bioinformatics [6] and can be browsed via an applet on the TAMBIS 
Web site. 
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The TAMBIS ontology is expressed in a description logic (DL) [7], a type of 
knowledge representation language for describing ontologies [8]. DLs are consid- 
ered an important formalism for giving a logical underpinning to knowledge repre- 
sentation systems, but they also provide practical reasoning facilities for inferring 
properties of and relationships between concepts [9]. TAMBIS makes extensive 
use of these reasoning services. 

As well as the traditional isa relationships (e.g., a Motif isa Sequence- 
Component), there are partitive (describing parts), locative (describing location), 
and nominative (describing names or labels) relationships. This means that the 
TAMBIS ontology can describe relationships such as: "Motifs are parts of pro- 
teins" and "Organelles are located inside cells." The ontology initially holds only 
asserted concepts, but these can be combined dynamically via relationships to 
form new, compositional concepts. These compositional concepts are automati- 
cally classified using the reasoning services of the ontology. Such compositional 
concepts can be made in a post-coordinated manner: That is, the ontology is 
not a static artifact; users can interact with the ontology to build new concepts, 
composed of those already in the ontology, and have them checked for consis- 
tency and placed at the correct position in the ontology's lattice of concepts. For 
example, M o t i f  can be combined with P r o t e i n  using the relationship i sCom- 
p o n e n t O f  to form a new concept P r o t e i n  m o t i f ,  which is placed as a kind 
of Motif. 

The ontology is a dynamic model in that what is present in the model is the 
description of potential concepts that can be formed in the domain of molecular 
biology and bioinformatics. As these new, compositional concepts are described, 
they are placed automatically within the lattice of existing concepts by the DL 
reasoning services. For example, the compositional concept P r o t e i n  m o t i f  
(see above) is automatically classified as a kind of M o t i f .  This new concept is 
then available to be re-used in further compositional concepts. Most of the other 
biological ontologies are static; the TAMBIS ontology is dynamic, built around a 
collection of concept descriptions and constraints on how they can be composed. 

The TAMBIS ontology is described using the DL called Galen Representation 
and Integration Language (GRAIL) [10]. In GRAIL, a new concept can be defined 
as follows: 

Base which rlf I ... rnf n 

where each r• is a role name and each f i  a filler concept. Each r i f i  pair is also 
known as a criterion. A role is a property of a concept, and the filler of a role is 
the name or description of the concept that can play the given role. For example, 
Motif which isComponentOf Protein is a description of a protein motif. 
Motif and Protein are names of existing concepts, which are acting here as 
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the base concept and a role filler respectively. The construct isComponentOf 
Protein is the criterion of Motif in this case. 

Description logic ontologies are organized within a subsumption lattice, which 
captures the isa relationship between two concepts. Th~ fact that one concept is a 
kind of another can either be asserted as part of the model, or inferred by the rea- 
soning system on the basis of the concept descriptions. Figure 7.2 illustrates both 
forms of subsumption relationship. For example, Mot i f has been asserted to be a 
kind of SequenceComponent, and PhosphorylationSi te has been asserted 
to be a kind of Moti f. By contrast, with the asserted hierarchy, the notion of a 
M o t i f  that can be found within a protein (Mot i f  wh ich  i sComponentOf  
P r o t e i n )  is inferred to be a kind of M o t i f ,  as are the other concepts in the three 
boxes on the bottom in Figure 7.2. In these cases, the criteria describing the concept 
are used to infer the classification of these concepts. Wherever C2 is subsumed by 
C1, every instance of C2 is guaranteed to be an instance of C1 (e.g., every M o t i f  is a 
SequenceComponent, and everyMot i f  which isComponentOf Protein 
is a Motif). 

7.2 

FIGURE 

Example of subsumption relationship within the ontology. The concepts that have 
been inserted into the lattice are shaded in the three boxes at the top of the figure. 
The locations of the unshaded concepts in the lattice have been inferred. 
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In spite of its inexpressiveness compared with some other DLs [11], the GRAIL 
representation has a useful property in its ability to describe constraints about 
when relationships are allowed to be formed. For example, it is true that a Mo- 
t i f  is a component of a B i o p o l y m e r ,  but not all motifs are components of 
all biopolymers. For example, a P h o s p h o r y l a t i o n S i t e  can be a component 
of a P r o t e i n ,  but not a component of a N u c l e i c  a c i d ,  both of which are 
B i o p o l y m e r s .  The constraint mechanism allows the TAMBIS model to capture 
this distinction and thus only allow the description of concepts that are described 
as being biologically meaningful in terms of the model from which they are built. 
This allows general queries, such as "find all protein motifs," to be expressed as 
well as specific queries such as "find phosphorylation motifs upon this protein." 

The TAMBIS ontology is supplied as a software component that acts as a 
server. Other components can ask questions of the knowledge in the ontology 
component. It is the backbone of the architecture, and other components either 
directly or indirectly use the ontology. These other components ask questions such 
as: "is this a concept; .... what are the parents, children, or siblings of this concept;" 
"which relationships are held by this concept;" and "what is the natural language 
version of this concept." 

7.2 
~ _ \~ ~ t ,  i ~ 

THE USER INTERFACE 

This section describes the user interface to TAMBIS. The interface supports users in 
carrying out two principal tasks: exploring the ontology and constructing queries, 
which are described in Sections 7.2.1 and 7.2.2, respectively. 

7.2.1 Exploring the Ontology 
Although the full TAMBIS ontology contains approximately 1800 concepts, the 
version of the ontology used in the online system for querying contains approx- 
imately 250 concepts. This model concentrates on proteins and enzymes; it de- 
scribes features such as functions, processes, motifs, and structure. In this and 
following sections, examples are based on this smaller ontology. 

The main window of the TAMBIS system is shown in Figure 7.3. The main 
window is used to launch exploration or query building tasks. A concept name is 
either typed into the find field directly or obtained from the list of Bookmarks. 
This concept can be used either as the starting point for model exploration or 
query building by selecting New q u e r y  or E x p l o r e .  If E x p l o r e  is selected in 
Figure 7.3, the explorer window depicted in Figure 7.4 is launched. 
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7.3 The TAMBIS main window. 

FIGURE 

7.4 

FIGURE 

The explorer window showing mot i f with all types of relations it has with other 
concepts. 
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Relationship Concept 

hasAccessionNumber 

isComponentOf 

indicatesFunction 

isAssociatedWithProcess 

hasModification 

accession number 

protein 

biological function 

biological process 

molecular modification 

7.1 

TABLE 

The relationships from moti f to other concepts in the TAMBIS model. 

7.2.2 

The window in Figure 7.4 shows the basic concept description facilities of the 
model browser. Concepts are shown as buttons; the buttons usually have a title 
that describes the relationship to the central or focus concept, which has no title 
itself. The button color also indicates the relationship the button has to the central 
concept, although this is not evident in the monochrome screenshot. 

Figure 7.4 shows all the relationships of m o t i f .  The parent and children 
concepts are sequence component and site, respectively. The relationships 
other than is-a-kind-of are shown in the lighter area of the figure. The name of 
the relationship appears as the button title, and the name of the concept to which 
the relationship links is the button label. For example, a relationship button title 
is hasAccessionNumber and a concept button label is accession number. 

Table 7.1 shows these relationships for mo t i f. The user can explore the is-a-kind- 
of hierarchy or the other relationships by clicking on the buttons representing the 
concepts to which m o t i  f is related. 

The explorer uses a pie-chart view of the ontology, with different sectors show- 
ing the parents, children, definitions, and other relationships. In the TAMBIS on- 
tology, some concepts have a large number of members in one sector, far more than 
can be shown at any one time. Rather than cramping the view of related concepts, 
the sectors are scrollable, allowing controlled viewing of the ontology's contents. 

Clicking on a concept button that is not the focus causes that button to become 
the new focus. Thus, a user can move up and down the taxonomy and across the 
taxonomies by following other relationships. Larger jumps may be made within 
the model by using a go to function. 

Constructing Queries 
Queries in TAMBIS are essentially concept descriptions. Thus, the task of query 
formulation involves the user in constructing a concept that describes the infor- 
mation of interest. An example query is illustrated in Figure 7.5, which is a screen 
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7.5 

FIGURE 

A query builder window containing the concept describing motifs in guppy pro- 
teins. 

shot of the query builder window containing a request for the motifs that are 
components of guppy proteins. The equivalent GRAIL concept is: 

motif which isComponentOf 
protein which hasOrganismClassification species-guppy 

As its name indicates, the query builder window is used for building descriptions 
of biological concepts that act as queries. One of the buttons along the bottom 
of the window, Submi t ,  is used to ask TAMBIS to process the query and collect 
the results. Part of a results page for this query is given in Figure 7.6. The results 
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7.6 

FIGURE 

Part of the results page that fulfills the description shown in Figure 7.5. 

shown in this figure are the values for the base concept of the query (i.e., the 
properties of the m o t i f s  that are components of guppy proteins). This set of 
results contains only the base concept (Motif);  other concepts may be included in 
the results and the relationships maintained between the different instances via the 
query builder. The pop-up menu on a concept button contains an option include 
in results. Selecting this option causes the concept button to be highlighted in the 
query builder. 

Given that a query is of the form: 

Base which rlf I ... rnf n 
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where each r~ is a role name and each f i a filler concept, the query builder 
essentially supports: 

1. The specialization or generalization of the base or filler concepts 

2. The addition or removal of criteria associated with a composite concept 

This incremental concept construction and modification is possible because of the 
dynamic model supported by the ontology. In fact, the query interface is driven 
directly from the model, and the reasoning services are used extensively during 
query construction to present appropriate options to users and for validating the 
concepts constructed. The knowledge held in the ontology is used to guide the 
user through the query building process by offering only appropriate possibilities 
for modifying a query at each stage [12]. As new concepts are formed and clas- 
sified, new criteria become available and others are lost as potential additions to 
the growing concept. Support for the previous query construction operations is 
illustrated in the following subsections. 

Replacing Part of a Query 
The query builder can be used either to construct a query from scratch or for 
modifying previous or bookmarked queries. One way of modifying the query is to 
replace the concept mo t i  f with one that is more specific. An example is replacing 
the concept m o t i f  with the more specialized concept p h o s p h o r y l a t i o n  ss t e .  

Figure 7.7 shows a menu associated with concepts in the query builder. 
Selecting replace with-a-kind-of-this causes a new window to appear, as shown 
in Figure 7.8. This window is the replacer window, which allows a version of the 
explorer to be used to identify a concept that can be used in the query in place of 
m o t i f .  

When launched, the replacer is focused on the mo t i  f concept, on which the 
query builder had focus. Moving down the hierarchy, through s i t e to modi f i e d  
s i t e  yields the window shown in Figure 7.9. Selecting p h o s p h o r y l a t i o n  
s i t e  and pressing replace it updates the query in the query builder so that the 
query has the same structure as that in Figure 7.5, but with m o t i f  replaced with 
p h o s p h o r y l a g i  on 8 i ge (Figure 7.10). The replacer limits the user to the is a hi- 
erarchy during replacement. This helps ensure that only valid concepts are created. 

Restricting a Concept 
When one concept is joined to another in the query builder with a relationship 
other than is-a-kind-of, the description of the original concept is restricted. In 
the example query, motifs are restricted to those that occur in proteins, 
rather than Motifs that can occur in other kinds of molecules. This restric- 
tion was added to motif using the restrict by a relationship option illustrated in 



7.2 The User Interface 201 

7.7 

FIGURE 

A query builder window showing the pop-up menu invoked by clicking on the 
topic concept mot i f. 

Figure 7.7. The type of motif to be retrieved can be further restricted by adding 
another concept to the description of mot i  f. For example, selecting the restrict 
by a relationship option leads to the user being offered the restrict window shown 
in Figure 7.11. Ifthe user then selects the h a s M o d i f i c a t i o n  p o s t  t r a n s l a -  
t i o n a l  modi f i c a t  i on check box and accept, the query in the query builder is 
replaced with that in Figure 7.12. The query is now "retrieve all motifs that bring 
about post translational modifications in guppy proteins." 

Nonsensical Questions 
The TAMBIS model only allows biologically sensible questions to be constructed. 
By only allowing is-a-kind-of relationships to he seen in the replacer, the tendency 
is to have only biologically sensible queries constructed. It is, however, possible to 
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7.8 

FIGURE 

A replacer window centered on the concept mo e i f. 

replace a valid concept with one that is biologically nonsense. However, the query 
builder detects this by consulting the ontology and informs the user of the error. 

For example, in the previously modified query it would be possible to re- 
place the concept p r o t e i n  with the concept n u c l e i c  a c i d .  However, if this 
replacement is made, TAMBIS notices that in the ontology nucleic acids cannot 
have phosphorylation sites and changes the color of the offending concept button 
( n u c l e i c  a c i d  in this case) to yellow, indicating that the query is not consistent 
with the constraints in the ontology. 

7.2.3 The Role of Reasoning in Query Formulation 
GRAIL, like other DL implementations, provides a classification or reasoning 
service, which allows the organization of concept descriptions into subsumption 
(isa) hierarchies. In the case of DLs, this is most interesting when applied to com- 
posite descriptions. In standard taxonomies, the position of each concept is ex- 
plicitly stated by the modeler. Within TAMBIS, through the use of the ontology 
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7.9 

FIGURE 

A replacer window centered on the concept modified site with the pointer 
about to select the concept p h o s p h o r y l a g i o n  s i t e .  

server, the position of composite concept descriptions can be determined by the 
reasoner. This is of particular importance when new, previously unseen, descrip- 
tions are introduced into the model--particularly when a user forms a new concept 
to ask a query. 

The basic classification hierarchy can be used to navigate through the existing 
descriptions in the model (e.g., using the explorer). More interesting, however, is 
TAMBIS's ability to support the formation of new, composite query expressions 
(through the use of the query builder). 

TAMBIS uses a constraint mechanism known as sanctioning to drive the query 
builder user interface [10]. Information included in the ontology specifies the com- 
positions that may be formed, and this in turn determines the specialization options 
that may be applied to a query. This type of constraint mechanism is peculiar to 
DLs, as such constraints naturally form part of many frame-based knowledge 
representation languages. These constraints are, however, important in describing 
what concepts are allowed to be formed within the ontology. 
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7.10 

FIGURE 

A query builder window showing the query with moti  f replaced by p h o s p h o -  
rylation site. 

For example, the concept Motif may be restricted or specialized through 
a number of relationships including h a s O r g a n i s m C l a s s i f i c a t i o n  or i n -  
d i c a t e s F u n c t i o n .  For each of these relationships, the allowable values are 
constrained by the values of the sanctions in the model. For example, ha sOr -  
g a n i s m C l a s s i f i c a t i o n  can only be filled with the concept kingdom (or one 
of its subclasses). 

It would be an onerous task to specify explicitly the potential values for any 
combination, so to minimize the information required, sanctions are inherited 
down the classification hierarchy in the model. Thus, the sanctioning information 
can be added sparsely. As a query is gradually built up, its position in the classifi- 
cation hierarchy will change, leading to changes in the restriction options offered. 
The reasoner is key to this process because it is used to determine the appropriate 
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7.11 

FIGURE 

The restrict window for motif, showing the relationships to other concepts that 
can be used to restrict the description of motif. The cursor lies on the hasModi-  
fication post translational modification check box. 

position of a query description and thus, the potential restrictions. As the query 
is constructed, the interface communicates with the ontology server, updating the 
restrictions offered to the user. The constraints or sanctions can also be viewed 
through the explorer; the relationships shown are exactly those that can be used 
for specialization or restriction of the concept in a query. 

7.3 THE QUERY PROCESSOR 

The query processor converts a source independent declarative GRAIL query into 
a source specific execution plan expressed in CPL [4]. CPL allows the concise 
expression of retrieval requests over collections of data, with data types for rep- 
resenting arbitrarily nested sets, bags, lists, records, and variants. The principal 
components of the query processor are the wrappers, the sources and services 
model (SSM), and the planner. 
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FIGURE 

The query builder containing the example query with an extra restriction on the 
topic concept mo ts  f. Note the lines indicating the relationship between the con- 
cepts. 

7.3.1 The Sources and Services Model 

The SSM stores the relationships between the concepts and roles in the ontology 
and the functions used to wrap sources in CPL. In the SSM, the ontology is used to 
index the CPL functions used to evaluate queries written in terms of the ontology. 



The SSM contains descriptions of three broad categories of information: iterators 
that retrieve instances of concepts from sources, role evaluators that retrieve or 
compute values for the roles of instances, and filters that are used to discard 
instances not relevant to the query. 

Each such description of a CPL function in the SSM includes its name, the 
types of its arguments, the type of its result, some information on the cost of 
computing the function, and the source accessed by the function. 

There are seven categories of mapping information supported within the SSM, 
which are described in detail in a paper of the Proceedings of 1 lth International 
Conference on Scientific and Statistical Data Management [13]. Four of these 
categories are described here to illustrate how the query processor works: 

1. Iteration: Iteration allows the instances of a concept to be retrieved from a 
source. For example, the fact that the instances or individuals of p r o t e i n  can 
be obtained from Swiss-Prot is represented by associating the concept p r o -  
t e i n  with the function g e t - a l l - s p - e n t r i e s ,  which has no input argu- 
ments and which returns results of type p r o t e i n _ r e c o r d .  Given a query in 
which the instances of protein are required, this SSM entry could be used to 
retrieve proteins from Swiss-Prot using a function call such as: 

\p <- get-all-sp-entries() 

If an alternative, more specialized source of protein information is available, 
for example, from a database of enzymes (any protein that acts as a catalyst 
is an enzyme), then an additional SSM entry can be created to indicate this. 
In fact, there is a source called ENZYME that stores descriptions of enzymes, 
and thus, there is an SSM entry associating the concept P r o t e i n  wh ich  
hasFunction catalysis with a function get-all-enzyme-entries 
that supports iteration over the entries in the ENZYME database. During 
query processing, the planner uses the most specialized source of information 
available to answer a query. If there are several sources of the same information 
(e.g., if there is more than one protein source), this must be handled within the 
wrappers. This restriction within the first version of TAMBIS is to be relieved 
in future versions of TAMBIS (see Section 7.5). 

2. Roles: Roles allow the evaluation of a role in an instance to obtain a value 
for its filler. For example, it is possible to obtain the A c c e s s i o n N u m b e r  of 
a protein given the P r o t e i n .  This is represented in the SSM by the asso- 
ciation of the concept Protein which hasAccessionNumber Acces- 
sionNumber with the {unction get-ac-from-sp-entry, which takes as 
argument a value of type proteinrecord and returns a value of type 
a c c e s s  2 on_number. This does not itself directly access a source, but rather it 
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accesses a data structure retrieved from a source by some other function (such 
as g e t - a l l - s p - e n t r i e s  described previously). This SSM entry could be 
used to retrieve the accession number from a Swiss-Prot entry using a function 
call such as: 

\accno <- get-ac-from-sp-entry(p) 

where p is a variable previously bound to a protein_record. 

3. Mapped Roles: Mapped roles are roles in which the concept provided as the 
role filler can be used to select instances of the base concept from a source. 
For example, instances of the concept P r o t e i n  w h i c h  h a s O r g a n i s m -  
Classification Species :guppy can be retrieved from Swiss-Prot by 
retrieving entries with guppy in their organism species field. This SSM entry 
could be used to retrieve Swiss-Prot entries using a function call such as: 

\p <- get-sp-entries-by-os("guppy") 

4. Filters: When instances of a concept have been retrieved, for example, by iter- 
ation, other criteria in the query may be used to discard some of the instances. 
For example, given an instance of P r o t e i n  in the query P r o t e i n  wh ich  
hasFunction Hydrolase, the instance of Protein must be checked to 
see if it h a s F u n c t i o n  H y d r o l a s e .  The relevant SSM entry could be used 
to generate code that tests a Swiss-Prot record for the function hydrolase using 
a function call such as: 

check-sp-entry- for-hydro lase (p) 

where p is a variable previously bound to a protein_record. 
The filters entries in the SSM are used to select values with the required 

characteristics at the client (i.e., values are retrieved from sources and then 
checked to see if they meet the needs of the query). In general, it is desirable to 
have the sources retrieve only values that are relevant. Mapped roles provide 
one way of sending filters to the sources to be applied as early as possible in 
the retrieval process. Unfortunately, at the time of writing, many sources did 
not offer query interfaces that allowed all filtering to be carried out early in 
the query process. This left much client-side filtering to take place. 

The Query Planner 
GRAIL queries are declarative, in that the meaning of a query is not dependent on 
the order o{ evaluation of its components. As a result, the TAMBIS system, and 
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not the user, must take responsibility for identifying an efficient evaluation order 
for the components of a GRAIL query. This section describes how GRAIL queries 
are represented internally for the purposes of optimization and how this internal 
representation is generated. 

GRAIL queries are intrinsically nested structures. The query internal form 
(QIF) used in TAMBIS can be seen as an un-nested representation of the original 
GRAIL query. This representation has been developed to allow easier reordering 
of the components of a query in the planner. The QIF is a list of query components, 
an example of which is given in Figure 7.13 for the running example GRAIL query: 

Motif which isComponentOf 
Protein which hasOrganismClassification Species-guppy 

The query is represented by two query components, one representing the Mo- 
t i f  and the other representing the P r o t e i n .  Each of the components stores the 
name of the base concept, a list of the criteria from the query, the name of the 
CPL variable used to hold values retrieved from sources, and details of the tech- 
nique identified by the planner for retrieving instances of the concept and of the 

< n a m e  : Mot i f 
t h e C r i t e r i a  �9 

< t h e C r i t e r i o n :  isComponentOf 
r e l a t e d C a r n p o n e n t  : component  of protein-1 
u s e r V a l u e  : '"' > 

t h e V a r i a b l e  : motif-1 
t h e T e c h n i q u e  : '"' 
t h e F e t c h C r i t e r i o n  : null  > 

< name �9 Protein 
theCriteria �9 

< theCriterion'hasOrganismClassification Species 
r e l a t e d C o m p o n e n t  �9 null 

u s e r V a l u e  �9 ' "guppy '  > 

t h e V a r i a b l e "  Protein- 1 
t h e T e c h n i q u e  " '"' 
t h e F e t c h C r i t e r i o n  �9 null > 

7.13 
�9 �9 , ~ 

FIGURE 

QIF for example query. 
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FIGURE 

input- query: List of Que~Component 

finaU?lan: L i  s t o f QueryComponent  
w h i l e  query <> [ ] do  

bestQC :=  findBest(query) 
finaU?lan :=  finalPlan ++ bestQC 
query :=  query - -  bestQC 

e n d  
r e t u r n  finalPlan 

The optimization algorithm. 

criteria used during retrieval. The values for theTechnique and theFetchCriterion 
are identified during planning. Generation of the QIF from a GRAIL query is 
straightforward and is carried out in a single pass over the query. 

Given the QIF for a query, a search algorithm seeks to identify efficient ways 
to evaluate the query given the functions available in the SSM. The search algo- 
rithm exploits the augmentation heuristic [14], which was selected because it is 
straightforward to implement and provides a reasonable tradeoff between cost of 
optimization and quality of plan generated. The algorithm is given in Figure 7.14. 
The basic strategy is to generate a plan as an ordered list of query components in 
which the first component in the list is predicted to be the least costly component 
to evaluate from scratch, and the subsequent components are the least costly to 
evaluate given what has previously been evaluated. 

The optimization algorithm in Figure 7.14 depends heavily on the definition of 
the findBest function. This function, given a query component, considers a variety 
of ways in which instances of the component can be retrieved from sources. Thus 
findBest considers the alternative ways of implementing the components of a QIF 
onto CPL functions, using the entries in the SSM. 

For example, the CPL generated for the example query is: 

{motif-i 

\protein-l<-get-sp-entry-by-os ("guppy") , 

\motif-l<-do-prosite-scan-by-entry-rec (protein-i) } 

This query contains two query components, one for Protein and the other for 
Mot i f ,  as illustrated in Figure 7.13. The query component for P r o t e i n  is chosen 
for evaluation first, and the SSM entry used to obtain instances of P r o t e i n  is 
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the role that is the inverse of hasOrganismClassification. Thus, the query 
processor accesses the ontology to find the inverse of hasOrganismClassifi- 
cation, which is the role hasproteins on Species. This role has a roles entry 
in the SSM, which is associated with the function get-sp-entry-by-os. This 
function, given the name of a S p e c i e s ,  consults Swiss-Prot to find the proteins 
from the species. The second query component is evaluated in a similar manner, 
using the inverse of the role i sComponentOf .  

The output from the planner is a QIF annotated with details of how to retrieve 
its components. Generating the corresponding CPL program involves a single pass 
through the QIF. For each QIF component, the code generator writes out the CPL 
functions identified by the planner and iterates over the component's other criteria, 
writing out function calls associated with roles and filters as required. 

7.3.3 The Wrappers 
The distribution and heterogeneity within bioinformatics resources means that 
many applications need to employ wrappers. Wrappers include external resources 
into a system that enable the resource to adopt the same operating paradigms as the 
host system, as well as transform the resource to common syntactic and semantic 
conventions. Many applications perform this wrapping on an ad hoc basis, using 
the resources available within many programming languages. Kleisli (presented 
in Chapter 6) is one of the few systems to offer wrapper services together with a 
query language that is flexible enough to cope with bioinformatics resources. 

The output from the TAMBIS system is a query plan written in CPL using a 
modified version of the BioKleisli library of biological database wrappers [15]. An 
example CPL query, which "retrieves all motifs in guppy proteins," is as follows: 

{m I 
\p<-get-sp-entry-by-os (" guppy") , 
\m<-do-prosite-scan-by-entry-rec (p) } 

In the query, the part before the [ is the projection expression, which, in this 
case, indicates that only the motifs m are of interest. The two function calls in the 
body of the query to the right of the ] are generators, which retrieve values from 
distinct, wrapped sources. The first line in the query body indicates that the new 
variable p is to be bound to each of the values that result from the evaluation of 
the function get-sp-entry-by-os with the parameter guppy. The function 
name can be read as get Swiss-Prot entry by organism species, although this is just 
a namemthe structure of the name is not significant in itself. The second function 



call binds the variable m to each of the motifs of the proteins bound to p. The 
function name can be read as scan the prosite database for motifs in the given 
protein record. 

The CPL system is ~,.upplied with function libraries that provide access to 
a range of bioinformatics sources of different types (e.g., databases, analysis 
tools [15]). TAMBIS uses these libraries and a number developed to provide a 
function-based view of the sources. The public release of TAMBIS 1.0 accessed 
five sources and used a total of approximately 300 CPL functions. 

CPL can be seen as providing syntactically consistent, but not source transpar- 
ent, access to the sources, and thus, CPL can be viewed as a wrapping mechanism 
tightly coupled with convenient language facilities for accumulating and transmit- 
ting results from different sources. 

Remarks on Handling Syntactic and Semantic 
Heterogeneity 
The heterogeneity in the bioinformatics resources is handled within this wrapper 
layer and the SSM. The wrapper layer irons out much of the structural or syntactic 
heterogeneity, providing a consistent call interface in terms of level of abstraction 
and services to each of the resources. For example, all CPL functions return sets of 
data, regardless of the number of instances returned. This means only one operator 
ever needs to be used to manipulate the results of a query. Any heterogeneity in 
encoding, such as representation of amino acid sequences, can also be dealt with 
at this level. 

The wrapper layer also gives an opportunity for standardization of naming 
conventions for services available in the resources, though this is of no consequence 
to users, except that they may find the CPL query plan useful as a quality check 
on the task TAMBIS is performing. 

The SSM affords the main opportunity for the reconciliation of semantic het- 
erogeneity. The ontology gives the user a global schema against which to form 
queries. The SSM allows terms seen in this global schema to be mapped to the 
values used in the various resources. For instance, the concept P h o s p h o r y l a -  
t i o n S i t e  corresponds to the motif entry ms00001 in the PROSITE databank. 
Similarly, the concept K i n a s e  maps to node 2 . 7 . *  .* in the ENZYME data- 
bank, but to the term k i n a s e  in the Swiss-Prot databank. The SSM can match 
filler mappings to the appropriate function mapping via the databank attribute in 
SSM objects. In this manner, the terms in the ontology may be mapped to different 
terms appearing in the resources. 
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7.4.1 Information Integration in Bioinformatics 
The difficulties associated with obtaining effective access to multiple biological 
information resources have long been recognized, and several different approaches 
have been proposed, making use of widely varying underlying technologies. 

Probably the most widely used source integration environment for bioinfor- 
matics resources is the Sequence Retrieval Service (SRS) [16] (presented in Chapter 
5). SRS is a system designed to integrate flat file databanks, which are the most 
common data storage form used for bioinformatics resources. SRS has its own pro- 
prietary data description and processing language. This is used to parse the flat file 
entries and create indices over fields and their contents. SRS has a query language 
for selecting entries or part of entries via Boolean combinations of indexed fields 
and their values. The language contains operators that can take advantage of the 
heavy cross-linking between different databanks. SRS is usually accessed via a 
Web-based interface behind which the construction of queries is hidden. The Web 
interface also offers supplementary analyses such as similarity and pattern scans 
over protein or nucleic acid sequences. SRS makes no attempt to reconcile any 
semantic heterogeneity between the different resources during query execution. 
Once results have been retrieved, the user can follow hyperlinks between entries 
and much use is made of this query by navigation style. 

Although SRS is successful at providing navigational access between diverse 
resources, it provides limited facilities to support querying or programming over 
diverse sources. Several proposals have been made in these directions. In terms 
of query-oriented access, Kleisli [15] provides both a query language for ranging 
over data types described using a rich hierarchical data model and a collection of 
wrappers (known in Kleisli as drivers) for accessing biological resources. However, 
Kleisli has no global schema providing a model of the available data and thus can 
be seen as providing lower-level access to biological resources than TAMBIS. In 
fact, as already described, TAMBIS generates Kleisli programs as output. Another 
query-oriented approach is provided by the Object Protocol Model (OPM) [17], in 
which queries can be written over an object-oriented global model using an object 
query language, and tools have been developed to assist in the creation of OPM 
views over heterogeneous sources. The main factor that differentiates TAMBIS 
from OPM, from a users' point of view, is that in TAMBIS queries are constructed 
over an ontology rather than over an object model. The impact of the ontol- 
ogy and its reasoning services on query building in TAMBIS has been discussed 
in Section 7.2. The ontology shields the user from the query language used, the 
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heterogeneity of the resources, and any demand for knowledge of the resources. 
Such transparency may not be to all users' tastes and more intricate queries or 
programs could be hand-crafted in systems such as Kleisli or OPM. Other pro- 
posals describing query-based access from object models to biological data in- 
clude ISYS [18], DiscoveryLink [19] and P/FDM [20]. Kleisli, DiscoveryLink, and 
P/FDM are respectively presented in Chapters 6, 11, and 9. 

Considerable attention has been given in bioinformatics to wrapping sources, 
thereby providing syntactically consistent access from programming languages to 
diverse resources. The bioPerl initiative I offers a collection of Perl modules that 
provide access to computational techniques and data commonly found within 
bioinformatics resources. In the early stages of the first TAMBIS version, however, 
there was much interest in using the Common Object Request Broker Architec- 
ture (CORBA) to wrap bioinformatics resources [21]. CORBA allows develop- 
ment of object views of heterogeneous and distributed resources, regardless of 
their host platform, operating system, or storage paradigm. The use of CORBA 
within bioinformatics is promoted by the Life Sciences Research (LSR) group of 
the Object Management Group. 2 The LSR aims to promote standard descriptions 
of object interfaces that enable interoperation between distributed bioinformat- 
ics resources. Among others, the European Bioinformatics Institute has provided 
CORBA servers for some of their databases [22]. Recently, access to SRS [16] 
has been provided through CORBA [23]. This service allows objects representing 
databank entries to be retrieved through the SRS query language. This should al- 
low remote access to a large number of databanks and analysis programs, along 
with a rudimentary query facility. TAMBIS has a very different emphasis from the 
middleware approaches in that interactive user access is the main emphasis and 
in that individual sources are essentially hidden from the user in TAMBIS. 

Unfortunately, the required large number of consistent, CORBA wrapped 
sources did not arrive to be taken advantage of by TAMBIS. The ability to down- 
load a description of a service's interface and automatically generate a client that 
could act as a wrapper was desirable, but not delivered. Many providers balked 
at the effort needed to provide a CORBA solution to delivering services. Simple 
Object Protocol Servers (SOAP) servers and Web services 3 offer a lighter weight 
solution to delivering bioinformatics services. A SOAP server for a resource is 
relatively cheap to set up because an object model does not have to be designed 

1. Information about the bioPerl initiative is available at http://bioperl.org. 
2. Go to http://www.omg.org/Isr for information on the Life Sciences Research effort of the Object 
Management Group. 
3.The Simple Object Protocol Servers (SOAP) and Web service protocols are available at 
http-//www.w3 c.org/soap. 



7.4 Related Work 

and implemented, as in CORBA. The operations available through that server can 
be described in the Web services description language (WSDL), 4 and this descrip- 
tion can be compiled into a client for the SOAP server. The idea is much the same 
as that for CORBA, but as a lighter weight solution it relies on simple message 
passing, not on a heavyweight object approach. These services transfer their data 
in extensible markup language (XML) and thus can take advantage of widely 
adopted XML data formats such as the biopolymer markup language [24] and 
the Bioinformatics Sequence Markup Language (BSML). 5 XML is also seen as the 
data format of choice by the Interoperable Informatics Infrastructure Consortium 
(I3C), 6 which aims to promote standards for protocols and exchange formats. 
The distributed annotation system (DAS) 7 uses many of these ideas to manage 
sequence annotations distributed around the network, and delivered by SOAP 
servers providing an XML description of sequence annotations that allows many 
annotators to form an integrated, yet varied, view on the biological sequence. 
These technologies offer a middleware solution to the integration of bioinformat- 
ics resources. Vital though such technologies undoubtedly are, they can be seen as 
plumbing resources together. Choice of resources, locating those resources, know- 
ing how to reconcile their view of the data, and the order in which to use them is 
still left up to the user of these technologies. TAMBIS, on the other hand, sits upon 
these middleware technologies and uses the ontology to offer full transparency in 
query management to the user. 

7.4.2 Knowledge Based Information Integration 
TAMBIS is one of several systems that uses a knowledge base as a central compo- 
nent in information integration; although, it is the first such system to be used in 
bioinformatics. A survey of knowledge-based information integration is given in 
Paton et al.'s article in Information and Software Technology [25]. 

In common with single interface to multiple sources (SIMS) [26], Information 
Manifold [27] and Observer [28], TAMBIS uses a description logic [7] to describe 
the concepts over which queries are to be expressed. A description logic is a mod- 
eling notation that supports reasoning over descriptions of concepts and their re- 
lationships. Two principal approaches are used in information integration systems 
to relate concepts in a global schema to the schemas of individual sources, namely 
global as view and local as view [29]. In the former, the global schema is defined as 

4. For more information about the WSDL, refer to http.//www.w3.org/TR/wsdl. 
5. The BSML is available at http-//www.bsml.org. 
6. Refer to http://www.i3c.org for information about I3C. 
7. Go to http.//www.biodas.org for information on biological DAS. 
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a view over the constructs in the schemas of the individual sources; in the latter the 
constructs in the schemas of the individual sources are defined as a view of those 
in the global schema. SIMS and Observer essentially use global as view techniques 
for processing queries, whereas Information Manifold is local as view. TAMBIS 
follows the global as view approach, but it generally differs from other such ap- 
proaches in that very few assumptions are made of the query processing capabilities 
of the individual sources. In fact, as is generally true in bioinformatics, TAMBIS 
assumes that individual sources lack declarative query interfaces and instead pro- 
vide rather limited call interfaces, supporting tasks such as iterating through the 
data items of a particular type or retrieving all data items with a given value for a 
particular attribute. 

A further important feature of TAMBIS is that it supports a distinctive user 
interface driven from the ontology, which guides the user through the query for- 
mulation process in a way that makes it difficult to construct biologically mean- 
ingless queries. Other knowledge-based information integration systems lack such 
sophisticated query formulation interfaces. 

Biological Ontologies 
The number of ontologies used in bioinformatics applications is still quite small, 
but it is growing. However, where ontologies have been used, they span a wide 
range of purposes, subject areas, and representation styles [5]. The uses of bio- 
ontologies fall into two distinct areas: database schema definition (e.g., EcoCyc 
and RiboWeb) and annotation and communication (e.g., GO and OMB). The 
TAMBIS ontology adds a third use, ontology-based search and query formula- 
tion, to this list. The version of TAMBIS described in this chapter was the first 
ontology solution based on Description Logic of its type in the bioinformatics 
arena. 

RiboWeb [30] is an ontology of ribosome structure, components, and ex- 
perimental methods used to drive a Web interface that supports the analysis of 
ribosomal data. The ontology acts as a schema, driving the acquisition of instances 
that create the knowledge base. The knowledge held in the ontology also drives the 
analysis of new data, guiding the user as to which analysis methods are appropriate 
for the data in hand and indicating results that contradict current knowledge. 

EcoCyc [31] uses an ontology to create an encyclopedia of E .coli metabolism, 
regulation, and signal transduction. As with RiboWeb, this ontology acts as a 
schema for the knowledge base, capturing the domain knowledge with high fi- 
delity. Both these systems use a frame-based knowledge representation language 
in which a frame represents a concept and slots within frames represent attributes 
or roles and their fillers. Such representations can be expressive, hence the richness 
of the models. 
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The Ontology for Molecular Biology (OMB) [32] provides a framework for 
describing computational methods, database representations, and core molecular 
biological concepts. The OMB is aimed at providing a reference ontology to im- 
prove community-wide communication. Data resources would use the OMB to 
define their classes, relationships, and terms. The OMB uses an object-like struc- 
ture with an is a kind of hierarchy and large use of other relationship types. 

The Gene Ontology (GO) [33] is a structured, controlled vocabulary used 
to annotate gene products for their function, ultimate cellular location, and the 
processes in which they take part. GO is used in several genomic databases and 
thus adds consistency across these resources. As a consequence, querying these re- 
sources becomes more reliable. The ontology has a simple structure, relying on an 
is-a-kind-of hierarchy and a sparse partonomy to relate natural language phrases. 
The ImMunoGeneTics ontology holds terminology on the areas of immunoglobu- 
lins and their genetics. Again, this acts as a controlled vocabulary, but it has a less 
well-defined structure than GO and appears more like a glossary with inter-related 
entries. 

Although all these resources can be termed ontologies, they fall into a spec- 
trum of expressivity and formality. The flame-based systems are relatively rich, 
expressive, and formal, whereas the phrase-based terminologies are simpler and 
less expressive. The first TAMBIS ontology was the first bio-ontology to use a de- 
scription logic as its representation and, as a consequence, has a more well-defined 
semantics than the other representations used in bio-ontologies. In contrast to the 
narrow range of ontology use, however, the scope and detail of the content of these 
ontologies varies enormously. The ImMunoGeneTics, RiboWeb, and EcoCyc on- 
tologies are highly detailed but highly specialized to one subject area, leaving only 
some commonality for core areas such as gene and protein. The OMB is wide 
ranging and high level, whereas GO lacks any high-level conceptualization but 
becomes very detailed, starting its conceptualization where the OMB finishes. As 
has been seen, the TAMBIS ontology is broad in its conceptualization, using an 
upper-level ontology in which to place these concepts. The ontology is relatively 
shallow, but detail may be added as the user dynamically creates new concepts as 
compositions of pre-existing concepts and has them automatically checked and 
classified by the ontology's reasoning service. 

7.5 CURRENT AND FUTURE DEVELOPMENTS 
IN TAMBIS 

The first version of TAMBIS was successful. It is possible to use an ontology de- 
scribing a complex domain, such as molecular biology and bioinformatics, and 
use it to give the illusion of a common query interface to multiple, diverse, and 
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heterogeneous information sources. The ontology drove a query formulation in- 
terface that allowed users to create complex queries over those multiple sources~ 
queries that would usually need a program written by a trained bioinformatician. 
Usage of TAMBIS did, however, reveal some issues that needed to be addressed in 
further work. 

Total transparency is not always desirable. The level of transparency offered by 
the first version of TAMBIS was appreciated by less skilled users who were happy 
to have decisions on which resources to use taken out of their hands. However, 
some users, usually those well versed in using bioinformatics resources, wished to 
express preferences about which resources to use, given that some sources may be 
more trusted than others. As the number of resources available within TAMBIS 
increases, such preferences will be able to be expressed. In addition, users may 
wish to record when and where data they retrieved arose [34]. In version one, 
the CPL query plan implicitly recorded some such information in the names of 
functions used in the query plan. It is more desirable, however, to record query 
provenance directly and explicitly. 

The TAMBIS user survey [2] revealed that user intervention during query ex- 
ecution and inspection of intermediate results was desirable. Users often wish to 
monitor the progress of a complex, multi-source query, inspecting results to eval- 
uate validity of the query so far and to edit data before it proceeds into subsequent 
parts of the query. Code for managing the execution of a query will have to be 
included into the code generated by the updated query processor in TAMBIS. 

In the first version of TAMBIS, both the SSM and wrappers were hand-crafted. 
It is an aim of future versions of TAMBIS to build tools to support this process. 
Concepts in the ontology have to be related to methods or functions in the wrap- 
pers and information about argument and return types, and costs recorded. The 
ontology itself, through the ontology server, could drive such a tool and also help 
to check that the content of the ontology is covered within the SSM. 

In the new version of TAMBIS, the TAMBIS ontology has been remodeled 
using the DL language DAML+OIL 8 and classified using the FaCT reasoner [35], 
which is considerably more powerful than GRAIL used in the original TAMBIS 
ontology.9 This allows the biological domain to be described more precisely in the 
ontology and allows more precise questions to be asked by the users. In addition, 
the reasoning services of the DL are used extensively during query processing 
to support semantic query optimization based on axioms within the ontology. 

8. Information on DAML+OIL can be found at http://www.daml.org. 
9. Versions of this ontology represented in DAML+OIL may be found at 
http://img.cs.man.ac.uk/stevens/tambis-oil.html. 
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The query processing in version one of TAMBIS was somewhat limited, and these 
limitations include: 

1. The ontology is represented using a relatively inexpressive DL in which certain 
features of the biological domain are difficult to express. 

2. The mapping between concepts in the ontology and collections in the sources is 
quite restrictive. For example, TAMBIS did not allow multiple sources for the 
same kind of data (e.g., both Swiss-Prot and the Protein Information Reserve 
(PIR) as protein sources. 

3. Although queries are optimized [13], there is no semantic query optimization 
making use of axioms from the ontology. 

In the second version of TAMBIS, an object-oriented wrapper layer has been 
adopted to replace that provided by CPL and BioKleisli. Instead of a CPL query 
plan, a Java program is written. The use of an object-oriented wrapper layer 
will make TAMBIS compatible with mainstream middleware proposals such as 
that standardized by the Object Management Group (OMG), which in turn is 
associated with an important standardization activity in bioinformatics. 1~ 

7.5.1 Summary 
This chapter has provided an overview of the first TAMBIS system for querying 
distributed bioinformatics sources. The key contributions of TAMBIS are: 

1. It is the first ontology-based information integration system to be used in 
bioinformatics. Although ontologies are becoming important in bioinformat- 
ics for annotating databases [33] and for managing complex information re- 
sources [30], TAMBIS is the first project to use ontologies to support the 
important task of integrating bioinformatics resources. 

2. TAMBIS is centered on the first description logic-based ontology in bioin- 
formatics. Other ontologies in bioinformatics have made use of frame-based 
representations or structured terminologies, but they are not amenable to sub- 
sumption reasoning as in TAMBIS. 

3. The user interface in TAMBIS is driven directly from the ontology, and as such, 
it both guides the user in constructing well formed requests and detects when 
biologically nonsensical questions have been asked. Other knowledge-based 

10. Information about the effort of standardization of bioinformatics by the OMG is available at 
h ttp ://www. om g. or g/h omepa ges/lsr/. 
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information integration systems have paid less attention to user interaction 
issues. 

4. The TAMBIS query processor has been integrated with existing wrapping 
software, allowing re-use of established middleware techniques and existing 
wrappers. The query processor makes minimal assumptions on the query inter- 
faces made available by sources, reflecting the limited public query interfaces 
generally available in bioinformatics. 

TAMBIS seeks to provide correct answers to precisely formed queries. Queries can 
be expressed precisely, at a level of detail corresponding to that of the underlying 
resources, by using the ontology to constrain what it is valid to ask. Answers should 
be correct because the sources and services model makes explicit how queries ex- 
pressed over the ontology can be answered using the available sources. However, 
such quality of service is achieved at some cost; the development of ontologies 
that describe a domain is a skilled and time-consuming process (the 1800-concept 
TAMBIS ontology took 2 person-years to write), and incorporating a wrapped 
source into the SSM is itself a manual and time-consuming task. However, these 
two tasks involve (1) describing what it is valid to ask of a collection of bioin- 
formatics sources and (2) describing how to obtain answers from a collection of 
sources. Although the developers and maintainers of a TAMBIS installation must 
undertake these tasks, the users of the TAMBIS system need not, and thus they 
can benefit from the knowledge encoded in the ontology and in the SSM. 
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8 
CHAPTER 

The Information 
Integration System K2 

Val Tannen, Susan B. Davidson, and Scott Harker 

In 1993, the invitational Department of Energy (DOE) workshop on genome 
informatics published a report that claimed that until all sequence data is gathered 
in a standard relational database, none of the queries in the appendix to the 
report could be answered (see Figure 8.1 for a listing of the queries) [1]. While the 
motivation for the statement was largely political, the gauntlet had been laid in 
plain view for database researchers: The data to answer the queries in the appendix 
were (by and large) available, but they were stored in a number of physically 
distributed databases. The databases represented their data in a variety of formats 
using different query interfaces. The challenge was, therefore, one of integrating 
heterogeneous, distributed databases and software programs in which the type of 
data was complex, extending well beyond the capabilities of relational technology. 

As an example of the type of genomic data that is available online, consider 
the EMBL-format Swiss-Prot entry shown in Figure 8.2. Each line begins with a 
two-character code, which indicates the type of data contained in the line. For 
example, each entry is identified by an accession number (AC) and is timestamped 
by up to three dates (DT). The create date is mandatory, while the sequence update 
and annotation update dates only appear if the sequence or annotation has been 
modified since the entry was created. The sequence (SQ), a list of amino acids, 
appears at the end of the entry; the rest of the core data includes citation informa- 
tion (bibliographical references, lines beginning with m), taxonomic data (oc), a 
description of the biological source of the protein, and database references (DR), 
explicit links to entries in other databases: EMBL (annotated nucleotide sequence 
database); HSSP (homology derived secondary structure of proteins); Wormpep 
(predicted proteins from the Caenorhabditis elegans genome sequencing project); 
InterPro, Pfam, PRINTS, PROSITE (databases of protein families and domains, 
among other things). Annotation information, which is obtained by publications 
reporting new sequence data, review articles, and external experts, is mainly found 
in the feature table (FT), keyword lines (KW), and comment lines (cc), which do 
not appear in this example due to lack of space. Note that the bibliographical 
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The following "unanswerable queries" were taken from Appendix 1 of the 1993 Invitational DOE Work- 
shop on Genome Informatics report, available at http://www, ornl .gov/hgmis/publicat/miscpubs/ 
bioinfo/r Rather than saying that all sequence databases must be relationalized, the 
wording of the report has now been modified to say "until a fully atomized sequence database is available 
(i.e., no data stored in ASCII text fields), none of the queries in this appendix can be answered." 

1. Return all sequences that  map "close" to marker M on human chromosome 19, are putative members 
of the olfactory receptor family, and have been mapped on a contig map of the region; return also the 
contig descriptions. (This is nominally a link between GenBank, GDB, and LLNL's databases.) 

2. Return all genomic sequences for which alu elements are located internal to a gene domain. 

3. Return the map location, where known, of all alu elements having homology greater than "h" with 
the alu sequence "S". 

4. Return all human gene sequences, with annotation information, for which a putative functional ho- 
mologue has been identified in a nonvertebrate organism; return also the GenBank accession number 
of the homologue sequence where available. 

5. Return all mammalian gene sequences for proteins identified as being involved in intracellular signal 
transduction; return annotation information and literature citations. 

6. Return any annotation added to my sequence number # # # #  since I last updated it. 

7. Return the genes for zinc-finger proteins on chromosome 19 that  have been sequenced. (Note that  
answering this requires either query by sequence similarity or uniformity of nomenclature.) 

8. Return the number and a list of the distinct human genes that  have been sequenced. 

9. Return all the human contigs greater than 150 kb. 

10. Return all sequences, for which at least two sequence variants are known, from regions of the genome 
within + / -  one chromosome band of D S 1 4 # # # .  

11. Return all publications from the last 2 years about my favorite gene, accession number # # # # .  

12. Return all G1/S serine/threonine kinase genes (and their translated proteins) that  are known (exper- 
imentally) or are thought (by similarity) also to exhibit tyrosine phosphorylation activity. Keep clear 
the distinction in the output. 

8.1 

FIGURE 

The 1993 DOE Report's "unanswerable" queries. 

references are nested structures; there are two references, and the RP (Reference 
Position), RC (Reference Comment), RA (Reference Author), and RL (Reference 
Location) fields are specific to each reference. Similarly, the FT (Feature Table) is a 
nested structure in which each line contains a start and end position (e.g., 14 to 21), 
a type of feature (e.g., NP_BIND), and a description. The entry is designed to be 
read easily by a human being and structured enough to be machine parsed. How- 
ever, several lines still contain a certain amount of structure that could be separated 
out during parsing. For example, the author list is a string, which could be parsed 
into a list of strings so as to be able to index into the individual authors. Similarly, 
the taxonomic data is also a string spread over several lines and could again be 
parsed into a list. 
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ID 

AC 

DT 

DT 

DT 

DE 

GN 

OS 

OC 

OC 
RN 

RP 

RC 
RA 

RL 
RN 

RP 
RC 
RA 

RL 

DR 

DR 

DR 

DR 

DR 

DR 

DR 

DR 

DR 
KW 
KW 
FT 
FT 
FT 

SQ 

EFIA_CAEEL STANDARD; PRT; 463 AA. 

P53013; 

01-0CT-1996 (Rel. 34, Created) 

01-OCT-1996 (Rel. 34, Last sequence update) 

15-DEC-1998 (Rel. 37, Last annotation update) 
ELONGATION FACTOR 1-ALPHA (EF-I-ALPHA). 

(EFT-3 OR F31E3.5) AND R03G5.1. 

Caenorhabditis elegans. 

Eukaryota; Metazoa; Nematoda; Chromadorea; Rhabditida; Rhabditoidea; 

Rhabditidae; Peloderinae; Caenorhabditis. 

[i] 
SEQUENCE FROM N.A.(EFT-3). 

STRAIN=BRISTOL N2; 

Favello A.; 
Submitted (NOV-1995) to the EMBL/GenBank/DDBJ databases. 

[2] 

SEQUENCE FROM N.A. (R03G5.1). 
STRAIN=BRISTOL N2; 

Waterston R.; 
Submitted (MAR-1996) to the EMBL/GenBank/DDBJ databases. 

EMBL; U51994; AAA96068.1; -. 

EMBL; U40935; AAA81688.1; -. 

HSSP; P07157; IAIP. 

WORMPEP; F31E3.5; CE01270. 

WORMPEP; R03G5.1; CE01270. 
INTERPRO; IPR000795; -. 

PFAM; PF00009; GTP_EFTU; I. 

PRINTS; PR00315; ELONGATNFCT. 

PROSITE; PS00301; EFACTOR_GTP; I. 
Elongation factor; Protein biosynthesis; GTP-binding; 
Multigene family. 
NP_BIND 14 21 GTP (BY SIMILARITY). 
NP_BIND 91 95 GTP (BY SIMILARITY). 
NP_BIND 153 156 GTP (BY SIMILARITY). 
SEQUENCE 463 AA; 50668 MW; 12544AFIFI7EI5B7 CRC64; 

MGKEKVHINI WIGHVDSGK STTTGHLIYK CGGIDKRTIE KFEKEAQEMG KGSFKYAWVL 

DKLKAERERG ITIDIALWKF ETAKYYITII DAPGHRDFIK NMITGTSQAD CAVLWACGT 
GEFEAGISKN GQTREHALLA QTLGVKQLIV ACNKMDSTEP PFSEARFTEI TNEVSGFIKK 
IGYNPKAVPF VPISGFNGDN MLEVSSNMPW FKGWAVERKE GNASGKTLLE ALDSIIPPQR 

PTDRPLRLPL QDVYKIGGIG TVPVGRVETG IIKPGMVVTF APQNVTTEVK SVEMHHESLP 

EAVPGDNVGF NVKNVSVKDI RRGSVCSDSK QDPAKEARTF HAQVIIMNHP GQISNGYTPV 

LDCHTAHIAC KFNELKEKVD RRTGKKVEDF PKFLKSGDAG IVELIPTKPL CVESFTDYAP 

LGRFAVRDMR QTVAVGVIKS VEKSDGSSGK VTKSAQKAAP KKK 

8.2 

FIGURE 

Sample Swiss-Prot entry. 

As shown in Figure 8.2, the type system for genomic data naturally goes 
beyond the sets of records of relational databases and include sequential data 
(lists), deeply nested record structures, and union types (variants). As an example 
of a union type, the format of the RL line depends on the type of publication: An 
unpublished entry contains a brief comment; a journal citation includes the journal 
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abbreviation, the volume number, the page range, and the year; the format of a 
book citation includes the set of editor names, the name of the book, an optional 
volume, the page range, the publisher, city, and year. The structure of this Swiss- 
Prot entry can be described precisely in a data definition language with sufficiently 
rich types. Such a description will be shown later on in Figure 8.5. 

The database group at the University of Pennsylvania responded to the DOE 
challenge by developing a view integration (or integration on-the-fly) environment. 
In such an environment, the schemas of a collection of underlying data sources 
are merged to form a global schema in some common model (e.g., relational, 
complex value, or object-oriented). Users query this global schema using a high- 
level query language, such as Structured Query Language (SQL) [2], Object Query 
Language (OQL) [3], or Collection Programming Language (CPL) [4]; the system 
then determines what portion of the global query can be answered by which 
underlying data source, ships local queries off to the underlying data sources, and 
then combines answers from the underlying data sources to produce an answer to 
the global query. The initial view-integration environment developed by our group 
was called Kleisli, and it was designed and implemented by Limsoon Wong. Wong 
later re-designed and re-implemented the Kleisli system at Singapore's Institute of 
Systems Science; this new version of Kleisli is described in Chapter 6 of this book. 
About the same time, other information integration projects were also developed 
[5, 6, 7], including the system based on the Object Protocol Model (OPM) [8]. 

K2 vs. Kleisli 

K2 is a successor system to Kleisli that was designed and implemented at the Uni- 
versity of Pennsylvania by Jonathan Crabtree, Scott Harker, and Val Tannen. Like 
Kleisli, K2 uses a complex value model of data and is based on the so-called monad 
approach (see Section 8.4). However, the design of K2 also contains a number of 
new ideas and redirections: First, the model incorporates a notion of dictionaries, 
which allows a natural representation of object-oriented classes [9] as well as Web- 
based data. Second, the internal language features a new approach to aggregate 
and collection conversion operations [10]. Third, the syntax of the language fol- 
lows a mainstream query language for object-oriented databases called OQL [3] 
rather than the elegant but less familiar comprehension-style syntax originally 
used in CPL [4] (Kleisli now uses an adapted SQL syntax). Fourth, a separation is 
made between the mediator (global schema) level and the query level by introduc- 
ing a mediator definition language for K2, K2MDL. K2MDL combines an Object 
Definition Language (ODL) specification of the global schema with OQL state- 
ments that describe the data mapping. The ability to specify intermediate mediators 
allows a large integration environment to be created in layers and componentized. 
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Finally, to improve its portability, K2 is implemented in Java and makes use of 
several of the standard protocols and application programming interfaces (APIs) 
that are part of the Java platform, 1 including Remote Method Invocation (RMI) 2 
and Java Data Base Connectivity (JDBC). 3 Thus, K2 is not an extension of Kleisli, 
but rather a system implemented from scratch that shares with Kleisli some of its 
design principles, while featuring a number of distinct developments just outlined. 

Overall, the goal of K2 is to provide a generic and flexible view integration 
environment appropriate for the complex data sources and software systems found 
throughout genomics, which is portable and appeals to common practices and 
standards. 

8.1 APPROACH 

A number of other techniques have also been developed over the past 11 years in 
response to the DOE challenge, including link-driven federations and warehouses. 
In a link-driven federation, users start by extracting entries of interest at one 
data source and then hop to other related data sources via Web links that have 
been explicitly created by the developers of the system. The Sequence Retrieval 
System (SRS) [11] presented in Chapter 5, LinkDB [12], and GeneCards [13] 
are examples of this approach. While the federation approach is easy to use, 
especially for novices, it does not scale well: When a new data source is added to 
the federation, connections between its entries and entries of all existing federation 
data sources must be added; this is commonly referred to as the N 2 problem. 
Furthermore, if users are interested in a join between two data sources in the 
federation, they must manually perform the join by clicking on each entry in 
the first data source and following all connections to the second data source. 4 In 
contrast, a join can be expressed in a single high-level query in a view or warehouse 
integration strategy. In general, the query languages supporting view or warehouse 
integration approaches are much more powerful and allow arbitrary restructuring 
of the retrieved data. 

A warehouse strategy creates a central repository of information and anno- 
tations. One such example is the Genomics Unified Schema (GUS) [14], which 
integrates and adds value to data obtained from GenBank/EMBL/DDBJ, dbEST, 

1. See http.//www.javasoft.com/j2se/. 
2. See http.//www.javasoft.com/products/rmi-iiop/. 
3. See http.//java.sun.com/products/jdbc/. 
4. A counterexample to this is SRS, in which a linking operator is provided to retrieve linked entries 
to a set of entries. 
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and Swiss-Prot (and others) and contains annotated nucleotide (dioxyribonucleic 
acid [DNA], ribonucleic acid [RNA]), and amino acid (protein) sequences. Note 
that view integration systems can also be used to create warehouses, which are 
instantiations of the global schema.The advantage of a warehouse approach over 
a view integration is one of speed and reliability; because all data are local, delays 
and failures associated with networks can be avoided. Furthermore, there is greater 
control over the data. However, a warehouse is not dynamic: Not only must it be 
kept up-to-date with respect to the underlying data sources, but including a new 
data source or algorithm is time-consuming. A more extended discussion of the 
problems and benefits of the link, warehouse, and view integration approaches can 
be found in articles in the IBM Systems Journal and the Journal of Digital Libraries 
[14, 15]. K2 is a system for generating mediators. Mediators are middleware com- 
ponents that integrate domain-specific data from multiple sources, reducing and 
restructuring data to an appropriate virtual view [16]. A major benefit of mediation 
is the scalability and long-term maintenance of the integration systems structure. 

Figure 8.3 is an example of how mediators can help the data integration 
task. In this example, each of the boxes represents a machine on which a copy of 
K2 is used to provide a mediator for some local, as well as external, data sources 

K2 Mediator I t K2 Me:iator 2 

a ~ . . 

8.3 

FIGURE 

Mediator example. 
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and views. Mediator I resides behind a company firewall and was built to integrate 
data from a local database and local copies of Swiss-Prot and GenBank, accessed 
through SRS, with the application program BLAST. Mediator 2 was then built 
outside the firewall to integrate data from some external data sources~PubMed 
and a patent database, which can only be accessed through a Web interface. An 
external copy of PubMed was used due to its size and the fact that the most 
recent version was always needed. Mediator 3 was then built within the company 
firewall to integrate data from Mediators 1 and 2, and Mediator 1 was enlarged 
to integrate data from Mediator 3. 

K2 (together with Tsimmis [17]) distinguishes itself among approaches based 
on mediation in that it generates mediators starting from a concise, high-level 
description. This makes K2 especially appropriate for configurations in which 
many mediators are needed or in which mediators must be frequently changed 
due to instability in the data sources or in the client needs. Some of the salient 
features of K2's mediation environment are: 

�9 K2 has a universal internal data model with an external data exchange format 
for interoperation with similar components. 

�9 It has interfaces based on the Object Data Management Group (ODMG) 
standard [3] for both data definition and queries. 

�9 It integrates nested data, while offering a Java-based interface (JDBC) to rela- 
tional database systems and an ODMG interface to object-oriented database 
systems. 

�9 It offers a new way to program integration/transformation/mediation in a very 
high-level declarative language (K2MDL) that extends ODMG. 

�9 It has an extensible rule-based and cost-based optimizer. 

�9 External or internal decision-support systems can easily be included. 

�9 It is written entirely in Java, with corresponding consequences about porta- 
bility. 

The basic functionality of a K2-generated mediator is to implement a data trans- 
formation from one or more data sources to one data target. The component con- 
tains a high-level (in ODMG/ODL) description of the schemas (for sources and the 
target) and of the transformation (in K2MDL). From the target's perspective, the 
mediator offers a view that, in turn, can become a data source for another mediator. 

An overview of the K2 architecture is given in Figure 8.4. In this diagram, 
clients can issue OQL queries or other commands against an integration schema 
constructed using K2MDL. The queries are then translated to the K2 internal 
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FIGURE 
K2 system architecture. 

language using K2MDL and query translators. This internal language expression 
is then optimized and executed using data drivers to ship sub-queries to external 
data sources and return results. 

The remainder of this chapter walks through the architecture by describing 
the data model, illustrating K2MDL and OQL, and briefly discussing the internal 
language, data drivers, query optimization, and user interfaces. The chapter closes 
with a discussion of scalability and impact. 

8.2 DATA MODEL AND LANGUAGES 

ODMG was founded by vendors of object-oriented database management systems 
and is affiliated with the Object Management Group (OMG), who created the 
Common Object Request Broker Architecture (CORBA). The ODMG standard 
has two main components: The first is ODL, a data definition language that is 
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used to define data elements. ODL is an extension of CORBA's Interface Definition 
Language (IDL). The second is OQL, an enhanced SQL92-1ike language that is 
used for querying. By building on these standards, K2 leverages the following 
features: 

�9 Rich modeling capabilities 

�9 Seamless interoperability with relational, object-oriented, information re- 
trieval (dictionaries), and electronic data interchange (EDI) formats (e.g., 
ASN.1) 

�9 Compatibility with the Universal Modeling Language (UML) 

�9 Integration with extensible markup language (XML) documents with a given 
Document Type Definition (DTD) 

�9 Official bindings to Java, C++, and Smalltalk 

�9 Industrial support from ODMG members (Ardent, Poet, Object Design) 

�9 Increasing use in building ontologies 

K2 uses ODMG's ODL to represent the data sources to be integrated. It turns out 
that many biological data sources can be described as dictionaries whose keys are 
simple strings and whose entries are complex values. 

A dictionary is simply a finite function. Therefore, it has a domain that is a 
finite set and associates to each element of the domain (called a key) a value (called 
an entry). The type of dictionary in ODL is denoted by dictionary<Tl, T2> 
where T1 is the type of the keys and T2 is the type of the entries. In OQL, the entry 
in the dictionary, L, corresponding to the key, k, is denoted by L r k ]. Because OQL 
has no syntax for the domain of a dictionary L, dom(L) is an addition to OQL 
for this purpose. Note that if L has type d i c t i o n a r y < T 1 ,  T2> then dom (L) has 
type set<Tl>. 

Complex value data are built by arbitrarily nesting records (tuples); 
collections--such as sets, bags (multisets), and lists; and variants. Variants are 
pieces of data representing tagged alternatives (also known as tagged unions). 
To illustrate complex values (including variants), Figure 8.5 presents an ODL 
declaration for a class whose objects correspond to (parts of) Swiss-Prot en- 
tries. The attribute me f returns complex values obtained by nesting sets, lists, 
records ( s t r u c t  in ODL), and variants, the latter identified by the keyword 
choice. 

K2's approach to data integration consists of two stages. In the first stage 
users specify data transformations between multiple sources and a single target. 
The target is virtual (unmaterialized) and is, in effect, a new view. The sources 
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FIGURE 

class Entry 

(extent Entries) 
{ 

attribute string ID; 

attribute string AC; 

attribute struct Dates { date Create; date SeqUpdate; date AnnotUpdate; } DT; 

�9 . . 

attribute list<string> OC; 

attribute list<struct { 

string RP; 

list<string> RA; 

string RC; 

choice { string present; bool absent; } RT; 

choice { 

string Unpublished; 

struct { string JAbbrev; 

short Volume; 

struct { short from; short to; } Pages; 

short Year; } Journal; 

struct { set<string> Editors; 

string Title; 

short Volume; 

struct { short from; short to; } Pages; 

string Publisher; 

string City; 

short Year; } Book; 

... } RL; 

... }> Ref; 

�9 . . 

attribute string KW; 

attribute struct { string KeyName; long From; long To; string Desc; } FT; 

attribute string SQ; 

ODL description of a class of Swiss-Prot entries (partial). 

may consist of materialized data or virtual views that have been defined previously 
through similar data transformations. 

In the second stage users formulate queries against the virtual views. OQL 
is an excellent vehicle for the second stage, but because it does not construct 
new classes as output, it is not expressive enough for the first stage. Hence, for 
defining sources-target transformations, K2 uses a new language, (K2MDL), which 
combines the syntax of ODL and OQL to express high-level specifications of 
middleware components called mediators, as explained previously. Some examples 
of K2MDL syntax are in the next section. 
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The rich type system used in K2 has allowed us to model a large range of 
practical data sources in a transparent and friendly manner. 

8.3 AN EXAMPLE 

The K2 approach is illustrated with an example where the target data could be 
called an ontology, that is, a schema agreed upon by a class of users. It shows how 
a mediator generated by K2 could implement it in terms of standard data sources. 
Consider the following data description, which is given in ODL syntax: s 

TARGET DATA DESCRIPTION 

class Protein 
(extent proteins) 

{ 

attribute string SwissprotAccession; 
attribute string recommendedName; 
attribute set<string> alternateNames; 
attribute string sequence; 
attribute int seqLength; 
relationship set<Gene> hasSource 

inverse Gene--hasProduct; 

class Gene 
(extent genes) 

{ 

struct Range {long from; long to;}; 
attribute string name; 
attribute string organism; 
attribute Range location; 
relationship Protein hasProduct 

inverse Protein--hasSource; 

5. This is, of course, a very simplified model of proteins and genes, but the intent of this example is to 
demonstrate K2MDL, not to develop a scientifically viable model. 
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Data about proteins is recorded using a Swiss-Prot accession number, a recom- 
mended name, a set of alternate names, the protein sequence and its length, and 
a set of references to the genes that code for the protein. Data about genes con- 
sists of the name of the gene, the name of the organism from which it comes, 
the location of the gene in the genome, and a reference to the protein for which 
it codes. While most of our attributes have simple values, strings, and integers, 
a l  t e r n a t e N a m e s  is a set of strings and 1 o c a t i o n  is a record.The schema also 
specifies that h a s S o u r c e  in P r o t e i n  and h a s P r o d u c t  in Gene are more than 
just attributes; they form a relationship between the extents of the two classes and 
are inverses. This means that the two following statements are validated: 

�9 Given a protein P, for each of the genes G in the set P .  h a s S o u r c e  it is the 
case t ha t  G. hasProduct : P. 

�9 Given  a gene G, it is the case tha t  G belongs  to  the  set (G.hasProduct) . 

hasSource. 

Now assume that the data about proteins and genes reside in (for illustration 
purposes) four materialized data sources: Swiss-Prot, Orgs, Genes, and Protein- 
Synonyms. Swiss-Prot contains some protein data, which can be accessed through 
an SRS driver that presents an object-oriented schema (i.e., a class). Orgs and 
Genes contain organism and gene data, respectively, in two relations (in the same 
or in separate relational databases). The SQL data description is given here for 
these relations, but in fact K2 uses an equivalent description in ODL syntax, based 
on the observation that relations are simply sets of records. Finally, a Web-based 
data source contains protein name synonyms and is modeled as a dictionary. 

SOURCE DATA DESCRIPTION 

class Swissprot 
(extent swissprots key Accession) 

{ 

attribute string ID; 

attribute string Accession; 

attribute string Description; 

attribute list<string> GeneNames; 

attribute string Sequence; 

attribute int Sequence_Length; 

CREATE TABLE Orgs 
(name string, 



orgid string 
); 

CREATE TABLE Genes 
(name string, 
geneid string, 
orgid string, 
startpos long, 
length long 

); 

ProteinSynonyms �9 dictionary< string, 
set<struct{syn string, lang string}> >; 

The K2MDL description of the integration and transformation that is performed 
when the sources Swiss-Prot, Orgs, Genes, and ProteinSynonyms are mapped into 
the ontology view. K2MDL descriptions look like the ODL definition in the ontol- 
ogy, enhanced with OQL expressions that compute the class extents, the attribute 
values, and the relationship connections (a related idea appears in a paper from 
the 1991 International Conference on Management of Data [18]). 

The definition of the class Protein as a K2MDL classdef starts with an 
OQL statement that shows how to compute the extent p r o t e i n s  of this class 
by collecting the accession numbers from SwissProt. The elements of the extent 
are used as object identifiers (OIDs) for the objects in the class. The rest of the 
definition shows how to compute the value of each attribute for a generic object 
identified by the OlD (denoted by the keyword s e l f ) .  The OQL function e l e -  
ment (c) extracts the unique element of the collection, c, when c is a singleton, 
and raises an exception otherwise. 

MEDIATOR DESCRIPTION I 

classdef Protein 
(extent proteins { select distinct s.Accession 

from swissprots s;}) 

attribute string SwissprotAccession { self; ]; 
attribute string recommendedName { 
element(select s.Description 

from Swissprot s where s.Accession=self); 
}; 
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attribute set<string> alternateNames { 

select distinct ps.syn 

from swissprots s, ProteinSynonyms[s.Description] ps 

where s.Accession:self and ps.lang:"eng"; 
}; 

attribute string sequence { 

element(select s.Sequence 

from swissprots s where s.Accession=self); 
}; 

attribute int seqLength { 

element(select s. Sequence_Length 

from swissprots s where s.Accession=self); 
}; 

relationship set<Gene> hasSource { 

select distinct gn 

from swissprots s, s.GeneNames gn 

where s.Accession:self; 

} inverse Gene--hasProduct; 

Note, for example, the computation of the value of the attribute alternate- 
Names. For an object identified by s e l f ,  find the Swiss-Prot entry, s,  whose 
accession number is s e l f ,  then use the description of s as a key in the dictio- 
nary P r o t e i n S y n o n y m s .  The entry retrieved from the dictionary P r o t e i n -  
synonyms [ s .  D e s c r i p t i o n ]  is a set of records. Select from this set the records 
with names in English and collect those names into the answer. The value of the 
attribute is a set of strings. A further query posed against the class P r o t e i n  may, 
for example, select objects whose a l t e r n a t e N a m e s  attribute contains a given 
synonym. 

MEDIATOR DESCRIPTION II 

classdef Gene 

(extent genes { select distinct g.geneid from Genes g;}) 
{ 

struct Range 
{ 

long from; 

long to; 
}; 



attribute string name { 

element(select distinct g.name 

from Genes g 

where g.geneid=self); 
}; 

attribute string organism { 

element(select o.name 

from Orgs o, Genes g 

where g.geneid=self and o.orgid=g.orgid); 
}; 

attribute Range location { 

element(select struct 

(from: g.startpos, to: g.startpos+g.length-l) 

from Genes g 

where g.geneid=self); 
}; 

relationship Protein hasProduct { 

element(select distinct s.Accession 

from swissprots s, s.GeneNames gn, Genes g 

where g.geneid=self and gn=g.name); 
} inverse Protein--hasSource; 

This example illustrates that relatively complex integrations and transformations 
can be expressed concisely and clearly, and can be easily modified. 

8.4 INTERNAL LANGUAGE 

The key to making ODL, OQL, and K2MDL work well together is the expres- 
siveness of the internal framework of K2, which is based on complex values and 
dictionaries. ODL classes with extents are represented internally as dictionaries 
with abstract keys (the object identities). This framework opens the door to inter- 
esting optimizations that make the approach feasible. 

The K2 internal language is organized by its type structure. There are base 
types such as string and number; record and variant types; collection types, namely 
sets, bags, and lists; and dictionary types. For each type construction there are two 
classes of operations: constructors, such as empty set and set union, and decon- 
structors, such as record field selection. The operations for collection types are 
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inspired from the theory of monads [19] and are outlined in an article in The- 
oretical Computer Science [20]. For details specific to aggregates and collection 
conversions see Proceedings of the 7th International Conference on Category The- 
ory and Computer Science [10]; the operations on dictionaries are described in 
the 1999 Proceedings of the International Conference on Database Theory [9]. 

The internal language derives its expressiveness from its flexibility. The prim- 
itives are chosen according to the principle of orthogonality, which says that their 
meaning should not overlap and that one should not be able to simulate one prim- 
itive through a combination of the others. This produces a language with fewer, 
but better understood, primitives. As an example, consider the following basic 
query statement: 

select E(x) 

from x in R 

where P (x) 

This translates internally into 

SetU(x in R)if P(x) then sngset(E(x)) else emptyset 

where Se tU  (x i n  S)T (x) is the set deconstructor suggested by the theory of 
monads and s n g s e t  (e) is a singleton set (i.e., the set with just one element, e). 

The semantics of the set deconstructor is that of the union of a family of sets. 
For example, if S = {a l , . . . ,  an} then 

SetU(x in S)T(x) --T(a I) U...UT(a n) 

This approach increases the overall language expressiveness by allowing any type- 
correct combination of the primitives (the language is fully compositional). At the 
same time it provides a systematic approach to the identification of optimization 
transformations by yielding an equational theory for the internal language. The 
formulas of such a theory are equalities between equivalent parts of queries, and 
they are used for rewriting queries in several of the stages of the optimizer. Finally, 
K2 exploits known efficient physical algorithms for operations such as joins by 
automatically identifying within queries the groups of primitives that compute 
these operations. 

8.5 DATA SOURCES 

K2 maps data from external sources into its internal language, as described pre- 
viously. K2 also has a notion of functions, which are used to provide access both 
to stand-alone applications such as BLAST (a sequence similarity package) and to 
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pre-defined and user-defined data conversion routines. This flexibility allows K2 
to represent most data sources faithfully and usefully. 

K2 accesses external information through data drivers. This is an intermediate 
layer between the K2 system proper and the actual data sources. There are two 
kinds of drivers in K2: those that are tightly integrated with the server and those 
that are more loosely connected. 

Integrated data drivers (IDDs) are created by extending the two abstract Java 
classes that form K2's driver API. The IDDs export a set of entry points to K2, 
connect to the data source, send queries to it, receive results from it, and package 
the results for use in the rest of the K2 system. The tight coupling of IDDs with the 
K2 system minimizes the overhead associated with connecting to the data source 
and allows for additional optimizations. K2 can also cache results of queries sent 
to the IDDs to improve overall speed. 

K2 comes with an IDD that can connect to any relational database system 
that implements Sun's JDBC API. A Sybase-specific IDD is also available, which 
takes advantage of some features of Sybase that are not available through JDBC. 
Oracle- and MySQL-specific versions are currently under development. To con- 
nect to a new relational database that supports JDBC, one merely needs to add the 
connection information to a configuration file, and K2 will automatically expose 
the underlying schema for querying. When the underlying schema changes, the K2 
administrator must restart the IDD so it can rediscover the new schema. A proce- 
dure for automatically detecting and rediscovering schema changes is planned as 
a future enhancement. 

Another IDD provided with K2 makes use of the World Wide Web Wrap- 
per Factory (W4F), also developed at the University of Pennsylvania. 6 W4F is a 
toolkit for the generation of wrappers for Web sources. New wrappers can easily 
be generated using W4F's interface and can then be converted automatically to 
K2 drivers. Changes to the format of Web sources are partly handled by W4F's 
declarative wrapper specification language. Large format changes require human 
intervention to re-define and re-generate wrappers. 

A very powerful feature of K2 is its ability to distribute query execution using 
its IDD for Java RMI. This IDD can make an RMI connection to a remote K2 
server and send it part of the local query for processing. Therefore, all that is 
required to connect to the remote K2 server and start distributing queries is a 
change to the local K2 configuration file. 

Sometimes it is difficult to develop an IDD for a new type of data source. For 
example, to treat a group of flat files as a data source it is often easier to write a 

6. Information about W4F is available at http'//db.cis.upenn,edu/Research/w4f.html. 
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Perl script to handle the string manipulations involved rather than implementing 
them in Java, as would be required in an IDD. In fact, some data sources cannot 
be accessed at all from Java but only through APIs in other languages. To handle 
this, K2 has an IDD called the PipeDriver that does not connect to the data source 
directly, but to a decoupled data driver (DDD). 

A DDD is a simple, stand-alone application, written in any language at all, that 
accepts queries through its standard input stream and writes results to its standard 
output. The PipeDriver takes care of sending queries to the DDD and converting 
the results into K2's internal representation. It can run multiple DDDs at once to 
take advantage of parallelism, and it can make use of the caching mechanism built 
into IDDs, all of which simplifies the job of the DDD writer. 

The DDD is responsible for establishing a connection to the data source (often 
nothing is required in this step), telling the PipeDriver it has made the connection, 
and waiting for a query to come in. When the DDD receives a query, it extracts the 
appropriate result from the data source and writes it out in a simple data exchange 
format. It then returns to waiting for the next query. This loop continues until 
the K2 server is brought down, at which point the PipeDriver tells the DDD to 
terminate. 

DDDs have been written to connect with SRS, KEGG, and BLAST, as well as 
a number of Web-based sources. The time it takes to create a new DDD depends 
greatly on the capabilities of the data source for which it is being written and on 
how much intelligence is to be built into the DDD. For example, it only takes an 
hour or two to write a Perl script to connect to a simple document storage system; 
the script must be written to receive an ID, retrieve the document, and print it out in 
K2's exchange format, taking into account any error conditions that might occur. 

However, the DDD writer has the flexibility to create special-purpose DDDs of 
any complexity. One DDD has been written that performs queries over a collection 
of documents that come from a remote Web site. This DDD maintains a local disk 
cache of the documents to speed access. It is responsible for downloading new 
versions of out-of-date documents, taking concurrency issues into account, and 
parsing and indexing documents on the fly. It also supports a complex language for 
querying the documents and for retrieving structured subsets of their components. 
This DDD was written over the course of two weeks and has been expanded 
periodically since. 

8.6 
" \ -  i "  " - ' 7  

QUERY OPTIMIZATION 

K2 has a flexible, extensible query optimizer that uses both rewrite rules and a cost 
model. The rewrite rules are used to transform queries into structurally minimal 
forms whose execution is always faster than the original query; this is independent 
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of the nature of the data. On the other hand, a cost model uses information 
about the nature of the data, such as the size of the data sets, selectivity of joins, 
available bandwidth, and latency of the data sources. The cost information is 
used to choose between minimal queries that are incomparable with respect to the 
rewrite rules. 

After translating the query into an abstract syntax tree, which K2 uses to 
represent queries internally, it is manipulated by applying a series of rewrite rules. 
This is where the bulk of K2's optimization work is done. 

First, a collection of rules is applied that simplifies the query by taking pieces 
expressed using certain kinds of tree nodes and replacing them with others. This 
reduces the number of types of nodes needed to deal with, thus reducing the 
number and complexity of the rewrite rules that follow. 

Next, the query is normalized. Normalization rules include steps such as tak- 
ing a function applied to a conditional structure and rewriting it so the function 
is applied to each of the expressions in the condition. Another normalization rule 
removes loops that range over collections known to be empty. Repeated applica- 
tion of the normalization rules, which currently number more than 20, reduces 
the query to a minimal, or normal, form. 

A final set of rewrite rules are then applied to the normalized query. These rules 
include parallelizing the scanning of external data sources and pushing selections, 
projections, and joins down to the drivers where possible. 

Even after all the rewrite rules have been applied, there may still be room for 
further optimization. In particular, a query may have a family of minimal forms 
rather than a single one. To choose between the minimal forms, the expected 
execution time of each version of the query is estimated using a cost model, and 
the fastest query form is chosen. The current cost model is still in the development 
stage. While it is functional and works well most of the time, it does not always 
choose the optimal form of the query. 

8.7 USER INTERFACES 

K2 has been developed using a client-server model. The K2 server listens for 
connections either through a socket or through Java RMI. It is easy to develop a 
client that can connect to K2 through one of these paths, issue queries, and receive 
results. Three basic clients come with K2: a text-based client, an RMI client, and 
one that runs as a servlet. 

The interactive, text-based client connects to a K2 server through a socket 
connection. It accepts a query in OQL through a command-line-style interface, 
sends it to the server, gets the result back as formatted text, and displays it; then it 
waits for the next query to be entered. This simple client generally is used to test 
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the socket connection to K2 and to issue simple queries during the development 
process. It is not intended to be an interface for end users. 

The other type of user connection is through RMI. These connections are 
capable of executing multiple queries at once and can halt execution of queries in 
progress. This is the connection method that K2 servers use to connect to other 
K2 servers to distribute the execution of a query. 

There is a client that makes an RMI connection to a K2 server with ad- 
ministrator privileges. The server restricts these connections to certain usernames 
connecting from certain IP addresses and requires a password. Currently, an ad- 
ministrator can examine the state of the server, add and remove connections to 
individual drivers, stop currently running queries, disconnect clients, and bring 
the server to a state where it can be stopped safely. More functionality is planned 
for administrators in the future. 

A client that runs as a servlet is also included with K2. Using code developed 
at the Computational Biology and Informatics Laboratory (at the University of 
Pennsylvania), this servlet allows entry of acl hoc K2 queries and maintains the 
results for each username individually. 

A major component of any user interface is the representation of the data to 
the user. As exemplified previously, a user (perhaps one serving a larger group) 
can define in K2MDL a transformed/integrated schema for a class of users and 
applications and can specify how the objects of this schema map to the under- 
lying data sources. Users of this schema (called an ontology by some) can is- 
sue vastly simplified queries against it, without knowledge of the data sources 
themselves. 

8.8 SCALABILITY 

In theory, the K2 system can be used to interconnect an arbitrarily large number 
of data sources. In practice, the system has been configured with up to 30 data 
sources and software packages, including GUS, PubMed, MacOStat, GenBank, 
Swiss-Prot, BLAST, KEGG, and several relational databases maintained in Oracle, 
Sybase, and MySQL. Even when querying using this configuration, however, it has 
been rare to access more than five data sources and software packages in the same 
query. 

The primary obstacles to scaling K2 to a larger system are (1) writing data 
drivers to connect to new data sources and (2) peak memory consumption. The 
difficulty of writing data drivers to external data sources has been mitigated to 
some extent by the fact that they are type specific rather than instance specific. 
For example, once an Oracle driver is written, it can be used for any Oracle 
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data source. On the other hand, an AceDB driver must take into account the 
schema of the AceDB source and is therefore not generic. Drivers are also relatively 
simple in K2 because they merely perform data translation. Any complex, semantic 
transformations are performed by K2MDL code, which is high-level and therefore 
more maintainable. 

While peak memory consumption has not as yet been an issue for the queries 
handled by K2 in the past, it could become a problem as applications become 
larger. K2 provides a means of limiting the number of queries it will run simulta- 
neously and the number of data source connections it will maintain. This allows 
an administrator to tune the system to the capabilities of the machine on which it 
is running. 

Because K2 is a view integration environment, it does not store any data 
locally; however, it may need to store intermediate results for operations that 
cannot be streamed (i.e., processed on the fly). At present, intermediate results are 
stored in main memory. 

Examples of operations that cannot be streamed include sorting, set differ- 
ence, nesting, and join. For example, when the difference of two data sets is taken, 
no output can be issued until both data sets are read; one of the data sets may have 
to be cached while the other is streamed and the difference is calculated. Similarly, 
although a join output can be produced as soon as a match is found between 
elements of the two data sets, data cannot be discarded until it is known not to 
match any future input from the other data set (see two International Conference 
on the Management of Data (SIGMOD) articles [21, 22] for discussions of im- 
plementations of operators in streaming environments). Thus, when data sets are 
large, these operations may need to cache temporary results in persistent mem- 
ory. Such techniques are not currently part of the K2 system and require futher 
development. 

Another difficulty of scaling to an arbitrarily large environment is the sheer 
complexity of understanding what information is available. To mitigate this, 
smaller mediated components can be composed to form larger mediated com- 
ponents. Thus, users need not be aware of the numerous underlying data sources 
and software systems, but they can interact with the system through a high-level 
interface representing the ontology of data. 

8.9 IMPACT 

As with Kleisli, a tremendous enhancement in productivity is gained by expressing 
complicated integrations in a few lines of K2MDL code as opposed to much 
larger programs written in Perl or C++. What this means for the system integrator 
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is the ability to build central client-server or mix-and-match components that 
interoperate with other technologies. Among other things, K2 provides: 

�9 Enhanced productivity (50 lines of K2MDL correspond to thousands of lines 
of C++) 

�9 Maintainability and easy transitions (e.g., warehousing) 

�9 Re-usability (structural changes easy to make at the mediation language level) 

�9 Compliance with ODMG standards 

K2 has been used extensively in applications within the pharmaceutical company 
GlaxoSmithKline. Some of the major benefits of the system exploited in these ap- 
plications have been the ease with which ontologies can be represented in K2MDL 
and the ability to conveniently compose small mediators into larger mediators. 

K2 was also used to implement a distributed genomic-neuroanatomical 
database. The system combines databases and software developed at the Cen- 
ter for Bioinformatics at the University of Pennsylvania~including databases of 
genetic and physical maps, genomic sequences, transcribed sequences, and gene 
expression data, all linked to external biology databases and internal project data 
(GUS [14])~with mouse brain atlas data and visualization packages developed at 
the Computer Vision Laboratory and Brain Mapping Center at Drexel University. 
The biological and medical value of the activity lay in the ability to correlate specific 
brain structures with molecular and physiological processes. The technological 
value of the activity was that K2 was ported to a Macintosh operating system en- 
vironment (MacOSX), visualization packages were tightly integrated into the envi- 
ronment, and both an ethernet and a gigabit network were used in the application. 
The work was significantly facilitated by the fact that K2 is implemented in Java. 

K2 now runs on Linux, Sun Solaris, Microsoft Windows, and Apple MacOS 
platforms. 

8.10 
, ~ .  \ \ . i , .  . . . . . .  �9 

SUMMARY 

This chapter presented the K2 system for integrating heterogeneous data sources. 
K2 is general purpose, written in Java, and includes JDBC interfaces to relational 
sources as well as interfaces for a variety of special-format bioinformatics sources. 
The K2 system has a universal internal data model that allows for the direct 
representation of relational, nested complex value, object-oriented, information 
retrieval (dictionaries), and a variety of electronic data interchange (EDI) formats, 
including XML-based sources. The internal language features a set of equivalence 
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laws on which an extensible optimizer is based. The system has user interfaces 
based on the ODMG standard, including a novel ODL-OQL combined design 
for high-level specifications of mediators. 
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9 
CHAPTER 

P/FDM Mediator 
for a Bioinformatics 
Database Federation 

Graham J. L. Kemp and Peter M. D. Gray 

The Internet is an increasingly important research tool for scientists working in 
biotechnology and the biological sciences. Many collections of biological data 
can be accessed via the World Wide Web, including data on protein and genome 
sequences and structure, expression data, biological pathways, and molecular in- 
teractions. Scientists' ability to use these data resources effectively to explore hy- 
potheses in silico is enhanced if it is easy to ask precise and complex questions 
that span across several different kinds of data resources to find the answer. 

Some online data resources provide search facilities to enable scientists to find 
items of interest in a particular database more easily. However, working interac- 
tively with an Internet browser is extremely limited when one want to ask complex 
questions involving related data held at different locations and in different formats 
as one must formulate a series of data access requests, run these against the var- 
ious databanks and databases, and then combine the results retrieved from the 
different sources. This is both awkward and time-consuming for the user. 

To streamline this process, a federated architecture and the P/FDM Medi- 

ator are developed to integrate access to heterogeneous, distributed biological 
databases. The spectrum of choices for data integration is summarized in Figure 
9.1. As advocated by Robbins, the approach presented in this chapter does not re- 
quire that a common hardware platform or vendor database management system 
(DBMS) [1] be adopted by the participating sites. The approach presented here 
needs a "shared data model across participating sites," but does not require that 
the participating sites all use the same data model internally. Rather, it is sufficient 
for the mediator to hold descriptions of the participating sites that are expressed 
in a common data model; in this system, the P/FDM Mediator, the functional 
data model [2] is used for this purpose. Tasks performed by the P/FDM Media- 
tor include determining which external databases are relevant in answering users' 
queries, dividing queries into parts that will be sent to different external databases, 
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9.1 
FIGURE 

Tightly Coupled: single organizational entity overseeing information 
resources relevant to genome research 

adoption of common DBMSs at participating sites 

shared data model across participating sites 

common semantics for data publishing 

Loosely Coupled" common syntax for data publishing 

Continuum from tightly coupled to loosely coupled distributed systems involving 
multiple databases [1]. 

translating these subqueries into the language(s) of the external databases, and 
combining the results for presentation. 

9.1 APPROACH 

9.1.1 Alternative Architectures for Integrating 
Databases 

The aim is to develop a system that will provide uniform access to heterogeneous 
databases via a single high-level query language or graphical interface and will 
enable multi-database queries. This objective is illustrated in Figure 9.2. Data 
replication and multi-databases are two alternative approaches that could help to 
meet this objective. 

Data Replication Approach 
In a data replication architecture, all data from the various databases and data- 
banks of interest would be copied to a single local data repository, under a single 
DBMS. This approach is taken by Rieche and Dittrich [3], who propose an ar- 
chitecture in which the contents of biological databanks including the EMBL nu- 
cleotide sequence databank and Swiss-Prot are imported into a central repository. 

However, a data replication approach may not be appropriate for this ap- 
plication domain for several reasons. Significantly, by adopting a data repository 
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FIGURE 

Users should be able to access heterogeneous, distributed bioinformatics resources 
via a single query language or graphical user interface. 

approach, the advantages of the individual heterogeneous systems are lost. For 
example, many biological data resources have their own customized search capa- 
bilities tailored to the particular physical representation that best suits that data 
set. Rieche and Dittrich [3] acknowledge the need to use existing software and pro- 
pose implementing exporters to export and convert data from the data repository 
into files that can be used as input to software tools. 

Another disadvantage of a data replication approach is the time and effort 
required to maintain an up-to-date repository. Scientists want access to the most 
recent data as soon as they have been deposited in a databank. Therefore, whenever 
one of the contributing databases is updated, the same update should be made to 
the data repository. 

Multi-Database Approach 
A multi-database approach that makes use of existing remote data sources, with 
data described in terms of entities, attributes, and relationships in a high-level 
schema is favored. The schema is designed without regard to the physical storage 
format(s). Queries are expressed in terms of the conceptual schema, and it is 
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the role of a complex software component called a mediator [4] to decide what 
component data sources need to be accessed to answer a particular query, organize 
the computation, and combine the results. Robbins [1] and Karp [5] have also 
advocated a federated, multi-database approach. 

In contrast to a data replication approach, a multi-database approach takes 
advantage of the customized search capabilities of the component data sources in 
the federation by sending requests to these from the mediator. The component re- 
sources keep their autonomy, and users can continue to use them exactly as before. 
There is no local mirroring, and updates to the remote component databases are 
available immediately. A multi-database approach does not require that large data 
sets be imported from a variety of sources, and it is not necessary to convert 
all data for use with a single physical storage schema. However, extra effort is 
needed to achieve a mapping from the component databases onto the conceptual 
model. 

The Functional Data Model 

The system described in this chapter is based on the P/FDM object database system 
[6], which has been developed for storing and integrating protein structure data. 
P/FDM is itself based on the functional data model (FDM) [2], whose basic con- 
cepts are entities and functions. Entities are used to represent conceptual objects, 
while functions represent the properties of an object. Functions are used to model 
both scalar attributes, such as a protein structure's resolution and the number of 
amino acid residues in a protein chain, and relationships, such as the relationship 
between chains and the residues they contain. Functions may be single-valued or 
multi-valued, and their values can either be stored or computed on demand. Entity 
classes can be arranged in subtype hierarchies, with subclasses inheriting the prop- 
erties of their superclass, as well as having their own specialized properties. Con- 
trast this with the more widely used relational data model whose basic concept 
is the relationma rectangular table of data. Unlike the FDM, the relational data 
model does not directly support class hierarchies or many-to-many relationships. 

Daplex is the query language associated with the FDM and, to illustrate the 
syntax of the language, Figure 9.3 shows two Daplex queries expressed against 
an antibody database [7]. Query A prints "the names of the amino acid residues 
found at the position identified by Kabat code number 88 in variable domains of 
antibody light chains (VL domains)." This residue is located in the core of the 
VL domain and is spatially adjacent to the residue at Kabat position 23. Query B 
prints "the names of the residues at these two positions together with the computed 
distance between the centers of their alpha-carbon (CA) atoms." Thus, one can 
explore a structural hypothesis about the spatial separation of these residues being 
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FIGURE 

Query A: 

f o r  each d in  ig_domain such t h a t  
domain_type(d) = " v a r i a b l e "  and chain_type(d)  = " l i g h t "  

p r i n t  ( p ro t e in_code (doma in_s t ruc tu r e  (d ) ) ,  
name(d), 
name(kabat_residue(d, "88"))) ; 

Query B" 

for each s in structure 
for each vl in domain_structure_inv(s) such that 

domain_type(vl) = "variable" and chain_type(vl) = "light" 
print (protein_code (s), 

name(kabat_residue(vl, "23") ), 
name (kabat_residue (vl, "88") ), 
distance(atom(kabat_residue(vl, "23"), "CA"), 

atom(kabat_residue(vl, "88"), "CA"))) ; 

Daplex queries against an antibody database. Query A: "For each light chain 
variable domain, print the PDB entry code, the domain name, and the name of 
the residue occurring at Kabat position 88." Query B: "For each VL domain, print 
the PDB entry code, the names of the residues at Kabat positions 23 and 88, and 
the distance between their alpha-carbon atoms." 

related to the residue types occurring at these positions. In Query A, ig_domain 
is an entity class representing immunoglobulin domains, and the values that the 
variable d takes are the object identifiers of instances of that class. Domain_type 
and c h a i n _ t y p e  are string-valued functions defined on the class i g_domain. 
D o m a i n _ s t r u c t u r e  is a relationship function that returns the object identifier of 
the instance of the class structure that contains the ig_domain  instance identified 
by the value of d. The expression p r o t e i n _ c o d e ( d o m a i n _ s t r u c t u r e ( d ) )  
illustrates an example of function composition. Query B shows nested loops in 
Daplex. 

FDM had its origins in early work [2, 8], done before relational databases 
were a commercial product and before object-oriented programming (OOP) and 
windows, icons, menus, and pointers (WIMP) interfaces had caught on. Although 
it is an old model, it has adapted well to developments in computing because it was 
based on good principles. First, it was based on the use of values denoting persistent 
identifiers for instances of entity classes, as noted by Kulkarni and Atkinson [9]. 
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This later became central to the object database manifesto [10]. Also, it had the 
notion of a subtype hierarchy, and it was not difficult to adapt this to include meth- 
ods with overriding, as in OOP [11]. Second, the notions of an entity, a property, 
and a relationship (as represented by a function and its inverse) corresponded 
closely to the entity-relationship (ER) model and ER diagrams, which have stood 
the test of time. Third, it used a query language based on applicative expressions, 
which combined data extraction with computation. Thus, it was a mathematically 
well-formed language, based on the functional languages [12, 13], and it avoided 
the syntactic oddities of structured query language (SQL). 

In developing the language since early work on the excluded function data 
model (EFDM) [9] Prolog was used as the implementation language because it 
is so good for pattern matching, program transformation, and code generation. 
Also, the data independence of the FDM, with its original roots in Multibase [14], 
allows to interface to a variety of kinds of data storage, instead of using a persistent 
programming language with its own data storage. Thus, unlike the relational or 
object-relational models, FDM does not have a particular notion of storage (row 
or tuple) built into it. Nor does it have fine details of arrays or record structures, as 
used in programming languages. Instead, it uses a mathematical notion of mapping 
from entity identifier to associated objects or values. Another change has been to 
strengthen the referential transparency of the original Daplex language by making 
it correspond more closely to Zermelo-Fraenkel set expressions (ZF-expressions), 
a name taken from the Miranda functional language [13, 15], and also called list 
comprehensions. 

Schemas in the Federation 

The design philosophy of P/FDM Mediator can be illustrated with reference to 
the three-schema architecture proposed by the ANSI Standards Planning And Re- 
quirements Committee (SPARC) [16]. This consists of the internal level, which 
describes the physical structure of the database; the conceptual level, which de- 
scribes the database at a higher level and hides details of the physical storage; and 
the external level, which includes a number of external schemas or user views. 
This three-schema architecture promotes data independence by demanding that 
database systems be constructed so they provide both logical and physical data 
independence. Logical data independence provides that the conceptual data model 
must be able to evolve without changing external application programs. Only view 
definitions and mappings may need changing (e.g., to replace access to a stored 
field by access to a derived field calculated from others in the revised schema). 
Physical data independence allows to refine the internal schema for improved 
performance without needing to alter the way queries are formulated. 
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External Schema E M 

Conceptual Schema C M 

Internal Schema I M External Schema E R 

Conceptual Schema C R 

9.4 

FIGURE 

Internal Schema I R 

ANSI-SPARC schema architecture describing the mediator (left) and an external 
data resource (right). 

The clear separation between schemas at different levels helps in building a 
database federation in a modular fashion. In Figure 9.4 the ANSI-SPARC three- 
schema architecture is shown in two situations: in each of the individual data 
resources and in the mediator itself. 

First, consider an external data resource. The resource's conceptual schema 
(which is called CR) describes the logical structure of the data contained in that 
resource. If the resource is a relational database, it will include information about 
table names, column names, and type information about stored values. With SRS 
[17], it is the databank names and field names. These systems also provide a mech- 
anism for querying the data resource in terms of the table/class/databank names 
and column/tag/attribute/field names that are presented in the conceptual schema. 
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The internal schema (or storage schema, which is called IR) contains details of 
allocation of data records to storage areas, placement strategy, use of indexes, set 
ordering, and internal data structures that impact efficiency and implementation 
details [6]. This chapter is not concerned with the internal schemas of individual 
data resources. The mapping from the conceptual schema to the internal schema 
has already been implemented by others within each of the individual resources 
and it is assumed this has been done to make best use of the resources' internal 
organization. 

A resource's external schema (which is called ER) describes a view onto the 
data resource's conceptual schema. At its simplest, the external schema could be 
identical to the conceptual schema. However, the ANSI-SPARC model allows for 
differences between the schemas at these layers so different users and application 
programmers can each be presented with a view that best suits their individual 
requirements and access privileges. Thus, there can be many external schemas, 
each providing users with a different view onto the resource's conceptual schema. 
A resource's external, conceptual, and internal schemas are represented on the 
right side of Figure 9.4. 

The ANSI-SPARC three-layer model can also be used to describe the mediator 
central to the database federation, and this is shown on the left side of Figure 
9.4. The mediator's conceptual schema (CM), also referred to as the federation's 
integration schema, describes the content of the (virtual) data resources that are 
members of the federation, including the semantic relationships that hold between 
data items in these resources. This schema is expressed using the FDM because it 
makes computed data in a virtual resource. Both the derived results of arithmetic 
expressions and derived relationships look no different from stored data. Both 
are the result of functions--one calculates and the other extracts from storage. 
As far as possible, the CM is designed based on the semantics of the domain, 
rather than consideration of the actual partitioning and organization of data in 
the external resources. Thus, through functional mappings, different attributes of 
the same conceptual entity can be spread across different external data resources, 
and subclass-superclass relationships between entities in the conceptual model of 
the domain might not be present explicitly in the external resources [18]. 

No one can expect scientists to agree on a single schema. Different scientists 
are interested in different aspects of the data and will want to see data structured 
in a way that matches the concepts, attributes, and relationships in their own 
personal model. This is made possible by following the ANSI-SPARC model; the 
principle of logical data independence means the system can provide different 
users with different views onto the integration schema. EM is used to refer to an 
external schema presented to a user of the mediator. In this chapter, queries are 
expressed directly against an integration schema (CM), but these could alternatively 
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be expressed against an external schema (EM). If so, an additional layer of mapping 
functions would be required to translate the query from EM t o  CM. 

A vital task performed by the mediator is to map between CM and the union of 
the different CR. To facilitate this process, another schema layer that, in contrast 
to CM, is based on the structure and content of the external data resources is 
introduced. This schema is internal to the mediator and is referred to as IM. The 
mediator needs to have a view onto the data resource that matches this internal 
schema; thus, IM and ER should be the same. FDM is used to represent IM/ER. 
Having the same data model for CM and IM/ER brings advantages in processing 
multi-database queries, as will be seen in Section 9.1.4. 

By redrawing Figure 9.4, the situation where there are u different external 
schemas presented to users and r data resources, the relationship between schemas 
in the federation is as shown in Figure 9.5. The five-level schema shown there is 
similar to that described by Sheth and Larson [19]. 

From past experience in building the prototype system, designing the IM/ER 
schema in a way that most directly describes the structure of a particular external 
resource adds practical benefits. In adding a remote resource to CM, one may focus 
mainly on those attributes in the remote resource that are important for making 
joins across to other resources. This clarifies the role of each schema level and 
the purpose of the query transformation task in transforming queries from one 
schema level to the next level down. 

Mediator Architecture 

The role of the mediator is to process queries expressed against the federation's 
integration schema (CM). The mediator holds meta-data describing the integration 
schema and also the external schemas of each of the federation's data resources 
(ER). In P/FDM, these meta-data are held, for convenience of pattern matching, 
as Prolog clauses compiled from high-level schema descriptions. 

The architecture of the P/FDM Mediator is shown in Figure 9.6. The main 
components of the mediator are described in the following paragraphs. 

The parser module reads a Daplex query (Daplex is the query language for 
the FDM), checks it for consistency against a schema (in this case the integration 
schema), and produces a list comprehension containing the essential elements of 
the query in a form that is easier to process than Daplex text (this internal form 
is called ICode). 

The simplifier's role is to produce shorter, more elegant, and more consistent 
ICode, mainly through removing redundant variables and expressions (e.g., if 
the ICode contains an expression equating two variables, that expression can be 
eliminated, provided that all references to one variable are replaced by references 
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Schemas in a database federation. 

to the other), and flattening out nested expressions where this does not change the 
meaning of the query. Essentially, simplifying the ICode form of a query makes 
the subsequent query processing steps more efficient by reducing the number of 
equivalent ICode combinations that need to be checked. 

The rule-based rewriter matches expressions in the query with patterns present 
on the left-hand side of declarative rewrite rules and replaces these with the right- 
hand side of the rewrite rule after making appropriate variable substitutions. 
Rewrite rules can be used to perform semantic query optimization. This capa- 
bility is important because graphical interfaces make it easy for users to express 
inefficient queries that cannot always be optimized using general purpose query 
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FIGURE 

Mediator architecture. The components of the mediator are shown inside the 
dashed line. 
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optimization strategies. This is because transforming the original query to a more 
efficient one may require domain knowledge (e.g., two or more alternative naviga- 
tion paths may exist between distantly related object classes but domain knowledge 
is needed to recognize that these are indeed equivalent). 

A recent enhancement to the mediator is an extension to the Daplex compiler 
that allows generic rewrite rules to be expressed using a declarative high-level 
syntax [20]. This makes it easy to add new query optimization strategies to the 
mediator. 

The optimizer module performs generic query optimization. 
The reordering module reorders expressions in the ICode to ensure that 

all variable dependencies are observed. 
The condition compiler reads declarative statements about conditions that 

must hold between data items in different external data resources so these values 
can be mapped onto the integration schema. 

The ICode rewriter expands the original ICode by applying mapping func- 
tions that transform references to the integration schema into references to the 
federation's component databases. Essentially the same rewriter mentioned pre- 
viously is used here, but with a different set of rewrite rules. These rewrite rules 
enhance the ICode by adding tags to indicate the actual data sources that contain 
particular entity classes and attribute values. Thus, the ICode rewriter transforms 
the query expressed against the CM into a query expressed against the ER of one 
or more external databases. 

The crucial idea behind the query splitter is to move selective filter operations 
in the query down into the appropriate chunks so they can be applied early and 
efficiently using local search facilities as registered with the mediator [KIG94]. 
The mediator identifies which external databases hold data referred to by parts 
of an integrated query by inspecting the meta-data, and adjacent query elements 
referring to the same database are grouped together into chunks. Query chunks are 
shuffled and variable dependencies are checked to produce alternative execution 
plans. A generic description of costs is used to select a good schedule/sequence of 
instructions for accessing the remote databases. 

Each ICode chunk is sent to one of several code generators. These translate 
ICode into queries that are executable by the remote databases, transforming query 
fragments from ER to CR. New code generators can be linked into the mediator 
at runtime. 

Wrappers deal with communication with the external data resources. They 
consist of two parts: code responsible for sending queries to remote resources 
and code that receives and parses the results returned from the remote resources. 
Wrappers for new resources can be linked into the mediator at runtime. Note that 
a wrapper can only make use of whatever querying facilities are provided by the 
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federation's component databases. Thus, the mediator's conceptual model (CM) 
will only be able to map onto those data values that are identified in the remote 
resource's conceptual model (CR). Thus, queries involving concepts like gene and 
chromosome in CM can only be transformed into queries that run against a remote 
resource if that resource exports these concepts. 

The result fuser provides a synchronization layer, which combines results re- 
trieved from external databases so the rest of the query can proceed smoothly. The 
result fuser interacts tightly with the wrappers. 

Example 
A prototype mediator has been used to combine access databanks at the EBI via 
an SRS server [17] and (remote) P/FDM test servers. Remote access to a P/FDM 
database is provided through a CORBA server [21]. This example, using a small 
integration schema, illustrates the steps involved in processing multi-database 
queries. 

In this example, three different databases are viewed through a unifying inte- 
gration schema (CM), which is shown in Figure 9.7(a). There are three classes in 
this schema: protein, enzyme, and swissprot_entry. A function represent- 
ing the enzyme classification number (ec_number)  is defined on the class e n z y m e ,  

and enzymes inherit those functions that are declared on the superclass p r o t e i n .  
Each instance of the class protein can be related to a set of s w i s s p r o t _ e n t r y  
instances. 

Figure 9.7(b) shows the actual distribution of data across the three databases; 
each of these three databases has its own external schema, ER. Db I is a P/FDM 
database that contains the codes and name of proteins. Db II is also a P/FDM 
database and contains the protein code (here called pdb_code) and enzyme classi- 
fication code of enzymes. To identify Swiss-Prot entries at the EBI that are related 
to a given protein instance, one must first identify the Protein Data Bank (PDB) 
entry whose ID matches the protein code and then follow further links to find 
related Swiss-Prot entries. Relationships between data in remote databases can be 
defined by conditions that must hold between the values of the related objects. 
Constraints on identifying values are represented by dashed arrows in Figure 9.7. 

Figure 9.8 shows a Daplex query expressed against the integration schema, 
CM. This query prints information about enzymes that satisfy certain selection 
criteria and their related Swiss-Prot entries. Figure 9.9 shows a pretty-printed 
version of the ICode produced when this query is compiled. This ICode is then 
processed by the query splitter, producing ICode (in terms of the resources' external 
schemas, ER) that will be turned into queries that will be sent to the three external 
data resources (Figure 9.10). Note that the variable v l  is common to all three 
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for each e in enzyme such that ec number(e) - "i.i.I.i" 

for each s in swissprot_entries(e) 

print (protein_name(e) , def(s), acc(s)) ; 

Daplex query expressed against an integration schema. 

9.9 

FIGURE 

[ V6, V4, V3 ] V1 +- enzyme ; 

V2 +- swissprot_entries (Vl) ; 

V3 = acc(V2) ; V4 = def(V2) ; 

V5 = ec_number(Vl) ; V5 = "I.i.i.i" ; 

V6 = protein_name (Vl) ] 

ICode corresponding to the query in Figure 9.8. 
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ICode for P/FDM Db II- 
[ V1 I V2 +- enzyme ; V3 = ec_number(V2) ; 

V1 = pdb_code(V2) ; V3 = "i.i.i.i" ] 

ICode for P/FDM Db I- 
[ V6 I V4 +- protein ; V5 = protein_code (V4) ; 

V6 = protein_name(V4) ; V1 = V5 ] 

ICode for SRS- 
IV7, V8 1 V9 +-pdb_entry ; VI0 = id(V9) ; 

V1 - VI0 ; VII +- link(V9) ; 

VI2 +- swissprot_entry ; 

VI3 = id(Vl2) ; V7 = def(Vl2) ; 

V8 : acc(Vl2) ; V13 in Vll ] 

ICode sub-queries against the actual data resources that need to be accessed to 
answer the query in Figure 9.8. 

foreign(swissprot_entries, [protein], srs_sprot, entity, 

KeyICode, ebi_db ) :- 

KeyICode = (VI,V2, [V3,V4,V5,V6], 

[ 

restrict (ebi_db:id, [ebi_db:srs_sprot], [V2] ,V6), 

restrict_subquery ( some (V5) , 

[ generate (ebi_db : pdb_entry, V3 ) , 

restrict ( ebi_db : id, [ ebi_db : pdb_entry] , [V3 ] , V4 ) , 

restrict (protein_code, [protein] ,VI,V4) , 

restrict (ebi_db:link, [ebi_db:pdb_entry] , [V3] ,V5) ] , 

[ expression ( [ ] , [V6,V5 ] , expr (=,V6,V5)) ] 

) 

] ) .  
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FIGURE 

Mapping function used to expand the relationship swissprot_entries in the 
integration schema into ICode that refers to data held at the EBI. 

query fragments. Values for this variable retrieved from P/FDM Db II are used in 
constructing queries to be sent to the other data resources. 

In the example, the class p r o t e i n  is related to the class s w i s s p r o t _ e n t r y  
in the integration schema by a multi-valued relationship function called 
s w i s s p r o t _ e n t r i e s .  The mapping function given in Figure 9.11 is used in 
transforming queries that contain this relationship into enhanced ICode that refers 
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for each d in ig_domain such that name(d) : "VH" 
for each rl in kabat_residue(d, "34") 

for each r2 in kabat_residue(d, "78") such that 

distance(atom(rl,"CB"), atom(r2,"CB")) < 5.0 

for each s in swissprot entries(domain structure(d)) 

print(protein_code(d), name(rl), name(r2), def(s), acc(s)); 

9.12 

FIGURE 

Daplex query that combines computation and data retrieval. 

to the external schemas, ER, of the actual data resources. Mapping functions such 
as this can be compiled from high-level declarative rewrite rules and do not have 
to be written by hand. 

9.1.6 Query Capabilities 
Daplex is the query language of the system. The examples in Figure 9.3 and Figure 
9.12 show how function calls can be composed in queries. The compositional form 
makes it easy to write complex queries and computations over the database that 
can be optimized by a query optimizer. This is a point often overlooked by the OOP 
community; Java and C++ have the necessary expressiveness, but because they lack 
referential transparency and a data model it is hard to make general optimizers for 
database applications in them. Daplex has greater expressive power that SQL (e.g., 
recursive functions can be defined directly in Daplex). This is particularly useful in 
many areas of bioinformatics, such as following transitive relationships through a 
sequence of reactions in a biochemical pathway or finding related biological terms 
in a hierarchical vocabulary. 

As mentioned in Section 9.1.4, Daplex queries are converted into ICode for 
subsequent processing. The great advantage is that many important optimizations 
just involve reordering selection predicates and generators in the set expression. 
These, in turn, are conveniently implemented as rewrite rules in Prolog [6]. It was 
also shown how to expand definitions of derived functions in the course of opti- 
mizing set expressions [22]. This makes good use of the referential transparency 
of expressions in functional programming. By contrast, where the computation 
is embedded in C++ or Visual Basic with arbitrary assignments, it is very hard 
to do significant optimization. This has led to the widespread adoption of com- 
prehensions (as ZF-expressions are now called). Buneman et al. [23] have shown 
the importance of distinguishing list, bag, and set comprehensions, so, strictly 
speaking, ZF-expressions compute bags but represent them by lists. 
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The Daplex query language enables arbitrary calculations to be combined with 
data retrieval operations [7]. For example, Figure 9.12 shows a query, expressed 
against an integration schema, that performs a geometric calculation on data in 
an antibody database and relates objects satisfying the given criteria with data in 
a remote Swiss-Prot database. The function distance computes a value rather than 
retrieving a stored value. As explained in Section 9.1.2, functions whose values 
are stored or derived look the same in the query, and the user cannot tell from 
looking at a result value whether it was retrieved from disc or computed. 

Daplex queries frequently include calls to functions written in procedural 
languages. For example, when working with data on 3D protein structures, one 
often calls out to geometric code from within queries, including C routines to 
measure bond angles and torsion angles, and code to superpose one structural 
fragment on another to compare 3D similarity. Following the same approach, it 
would be possible to treat the results of a computation on a remote machine, 
such as a BLAST search, that are generated dynamically at run-time just like data 
values that are stored persistently on disc. The system does not yet have a wrapper 
for BLAST, but, in principle, such a wrapper would be implemented just like any 
other derived function in P/FDM. 

The mediator does not currently cache query results, so subsequent queries 
cannot refer to a result set. However, both user interfaces described in Section 9.2.2 
enable follow-on queries to be constructed incrementally based on the previous 
query. 

For more complex P/FDM applications that cannot be expressed in Daplex, 
Prolog can be used [24]. However, unlike Daplex queries, these Prolog programs 
are not optimized automatically (see Section 9.2.1). The P/FDM system provides 
a set of Prolog routines that perform primitive data access operations, such as 
retrieving the object identifier of an instance of an entity class, retrieving the scalar 
value of an attribute of an object with a given object identifier, or retrieving the 
object identifier of a related object. Queries that require access to several data 
sources in the federation can be written directly in Prolog. 

Data Sources 
P/FDM was previously used with various data sources including hash files, rela- 
tional databases, flat files (including some accessed via SRS), POET, AMOS II and 
AceDB. 

There is no control over changes being made to remote resources, as remote 
sites retain their autonomy. Depending on the nature of the changes to a remote 
resource, this may require changes in one or both parts of the wrapper for that 
resource. Changes to a remote resource need not require changes to be made to 
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the mediator's conceptual model (CM), though they may require some changes to 
be made to the declarative mapping functions associated with data in the changed 
resource. 

9.2 
. . . . .  Z . .  " �9 7 . ~  

ANALYSIS 

The use of mediators was originally proposed by Wiederhold [4] and became an 
important part of the knowledge sharing effort architecture [25]. Examples of such 
intelligent, information-seeking architectures are Infosleuth [26] and KRAFT [27]. 
In this architecture, the mediator can run on the client machine, or else be avail- 
able as middleware on some shared machine, while the wrapper is on the remote 
machine containing the knowledge source. The idea behind this is that existing 
knowledge sources can evolve their schemas, yet present a consistent interface to 
the mediator via suitable changes to the wrapper. For this purpose the wrapper 
may be as simple as an SQL view, or it may be more complex, involving mapping 
of code. In any case, the site is able to preserve some local autonomy. Other medi- 
ators do not have to worry about how the site evolves internally. Also, new sites 
can join a growing network by registering themselves with a facilitator. All the 
mediator needs to know is how to contact the facilitator and that any knowledge 
sources the facilitator recommends will conform to the integration schema. 

This chapter describes an alternative architecture, where the wrappers reside 
with the mediator. This has the advantage that there is no need to get the knowledge 
source to install and maintain custom-provided wrapper software. 

In the architecture, shown in Figure 9.6, the code generators produce code 
in a different query language or constraint language. Thus, they are used in two 
directions. In one direction, they map queries or constraints into a language that 
can be used directly at the knowledge source. This can be crucial for efficiency 
because it allows one to move selection predicates closer to the knowledge source 
in a form that is capable of using local indexes. This can have a significant effect 
with database queries because it saves bringing many penny packets of data back 
through the interface, only to be filtered and rejected on the far side [28]. In the 
other direction, wrappers are used to map data values (e.g., by using scaling factors 
to change units or by using a lookup table to replace values by their new identifiers). 

Note that building a so-called global integration schema is not advocated. 
These have often been criticized on the grounds that attempts to map every single 
concept in one all-embracing schema is both laborious and never-ending. Instead, 
an incrementally growing integration schema is visualized, driven by user needs. 
Ideally the schema would be built interactively using a GUI and rules that suggest 
various mappings, as proposed by Mitra et al. [29] in their ONION system for 
incremental development of ontology mappings. The crucial thing to realize is that 
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the integration schema represents a virtual database, which allows it to evolve 
much more easily than a physical database. 

Related work in the bioinformatics field includes the Kleisli system presented 
in Chapter 6 [30, 31]. The query language used in Kleisli is the Collection Pro- 
gramming Language (CPL), which is a comprehension-based language in which the 
generators are calls to library functions that request data from specific databases 
according to specific criteria. Thus, when writing queries, the user must be aware 
of how data are partitioned across external sites. This contrasts with the approach 
taken in the P/FDM Mediator, where references to particular resources do not fea- 
ture in the integration schema or in user queries. Of course, an interface based on 
domain concepts and without references to particular resources could be built on 
top of Kleisli. 

The TAMBIS system presented in Chapter 7 [32] writes query plans in CPL. 
Plans in TAMBIS are based on a classification hierarchy, whereas P/FDM plans 
are oriented toward ad hoc SQL3-1ike queries. However, the overall approach is 
similar to using a high-level intermediate code translated through wrappers. 

Another related project is DiscoveryLink, presented in Chapter 11 [33]. The 
architecture of the DiscoveryLink system is similar to that presented in this chapter. 
DiscoveryLink uses the relational data model instead of FDM, and all the databases 
accessed via DiscoveryLink must present an SQL interface. 

9.2.1 Optimization 
Optimization takes a great advantage from using an easily transformable high- 
level representation based on functional composition. 

Three kinds of optimization are done within the P/FDM Mediator. First, the 
rewriter can apply rules that perform semantic query optimization. Additionally, 
rewrite rules [20] can be used to implement the logical rules given by Jarke and 
Koch [34]. They can implement many forms of rewrites based on data semantics, as 
discussed in King [35]. They can spot opportunities to replace iteration by indexed 
search [33]. In experiments using the AMOS II system [36] as a remote resource, 
rewrite rules were able to implement flattening and un-nesting transformations 
that prevent wasting time compiling subqueries in AMOSQL. A similar approach 
could be adapted to features of other DBMSs. Most importantly, rewrites that 
change the relative workload between two processors in a distributed query can 
be performed. Finally, all these rewrites can be combined, as some of them will 
enable others to take place. Thus, one can deal with many combinations without 
having to foresee them and code them individually. 

Second, the optimizer performs generic query optimizations. The philosophy 
of the optimizer is to use heuristics to improve queries. It examines alternative 
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execution plans and, although it uses a simple cost model, it is successful in avoid- 
ing inefficient strategies, and it often selects the most effective approach [15]. The 
optimizer was subsequently rewritten using a simple heuristic to avoid the com- 
binatorial problem of examining all possible execution plans for complex queries 
[22]. 

Third, the query splitter attempts to group together query elements into chunks 
that can be sent as single units to the external data resources, thus providing the 
remote system with as much information as possible to give it greater scope for 
optimizing the sub-query. 

Outside the mediator, the approach is able to take advantage of the optimiza- 
tion capabilities of the external resources. 

There is scope for introducing adaptive query processing techniques to im- 
prove the execution plans as execution proceeds and as results are returned to the 
mediator [37], but this has not yet been done in our prototype system. 

User Interfaces 

While queries against a P/FDM schema can be formulated directly in either Prolog 
or Daplex, this requires some programming ability and care must be taken to use 
the correct syntax. Therefore, two interfaces were developed to formulate queries 
without the user having to learn to program in either Prolog or Daplex. Both of 
these interfaces have a representation of the schema at their heart, and they enable 
the user to construct well-formed Daplex queries by clicking and typing values for 
attributes to restrict the result set. 

A Java-based visual interface for P/FDM [38] was developed with a graphical 
representation of the database schema at its center. Figure 9.13 shows this interface 
in use with the schema for an antibody database [7]. Users construct queries by 
clicking on entity classes and relationships in the schema diagram and constraining 
the values of attributes selected from menus. As this is done, the Daplex text 
of the query under construction is built up in a sub-window (the query editor 
window). Queries are submitted to the database via a CORBA interface [21]. 
Results satisfying the selection criteria are displayed in a table in a separate result 
window. A particularly novel feature of the interface is copy-and-drop, which 
enables the user to select and copy data values in the result window and then 
drop these into the query editor window. When this is done, the selected values 
are merged into the original query automatically, in the appropriate place in the 
query text, to produce a more specialized query. The Java-based interface runs as 
a Java application, but it does not yet run within a Web browser. 

In addition, a Web interface was developed with hypertext markup language 
(HTML) forms and accesses the mediator via a CGI program (Figure 9.14). Such 
interfaces can be generated automatically from a schema file. The interface's front 
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9.13 

FIGURE 

Visual Navigator query interface [38]. 

page lists the entity classes in the schema, and the user selects one of these as 
the starting point for the query. As the query is built up, checkboxes are used to 
indicate those attributes whose values are to be printed. The user can constrain 
the value of an attribute by typing into its entry box (e.g., 1.1.1.1 or <2.5) and 
can navigate to related objects using the selection box labeled relationships at the 
bottom of each object's representation within the Web page. Figure 9.14 shows 
the Web interface at the point where the user has formulated the query used in 
the example in Section 9.1.5. Pressing the Submit button will cause the equivalent 
Daplex query to be generated. 

When using a graphical user interface that supports ad hoc querying, it is easy 
for naive queries that involve little or no data filtering to be expressed. This can 
result in queries that request huge result sets from remote resources. An alterna- 
tive approach, as in TAMBIS, would be to provide only user interfaces that guide 
the user toward constructing queries with a particular structure and that have a 
suitable degree of filtering. However, such an interface would constrain the user to 
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9.14 Web-based query interface. 

FIGURE 



9.2 .... Analysi,.~s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  271 

9.2.3 

asking only parameterized variants of a set of canned queries anticipated by the in- 
terface designer. While such interfaces could be implemented easily, P/FDM design 
specification favors that users have the freedom to express arbitrary queries against 
a schema, and an area for future work is identifying and dealing with queries that 
could place unreasonable loads on the component databases in the federation. 

Current interfaces do not provide personalization capabilities. It is, however, 
possible to provide users with their individual views of the federation (see EM 
schemas in Figure 9.5), but this would be done by the database federation's ad- 
ministrator on behalf of users, rather than by users themselves. 

Scalability 
When a new external resource is added to the federation, the contents of that 
resource must be described in terms of entities, attributes, and relationships~the 
basic concepts in the FDM. For example, entity classes and attributes are used to 
describe the tables and columns in a relational database, the classes and tags in an 
AceDB database, and the databanks and fields accessed by SRS. The integration 
schema has to be extended to include concepts in the new resource, and mapping 
functions to be used by the ICode rewriter must be generated. Because the media- 
tor has a modular architecture in which query transformation is done in stages, the 
only new software components that might have to be written are code generators 
and wrappers~the components shown with dark borders in Figure 9.6. All other 
components within the mediator are generic. However, the federation administra- 
tor might want to add declarative rewrite rules that can be used by the rewriter to 
improve the performance of queries involving the new resource. Code generators 
for new data sources can be written in one or two days when using existing code 
generators as a guide. In general, as the expressions being evaluated obey the prin- 
ciples of substitutability and referential integrity, expressions that match patterns 
in rewrite rules can be substituted with other expressions that have the same value. 
This means new mappings can be added without the risk of encountering special 
cases or some arbitrary limit on the complexity of expressions, as can happen with 
SQL. 

A federated database system and a mediator system are similar architectures 
that differ in terms of how easily one can attach new database sources. In a fed- 
erated architecture, the integration schema is relatively fixed and designed with 
particular database sources in mind. Extra databases can be added, with some 
effort, by the database administrator. A mediator tries to integrate new databases 
available at their given Web addresses on the basis of descriptions provided by 
the end user. The whole process is more dynamic. When dealing with a new 
source, a good mediator will try to spot heuristic optimization rules it can re-use 
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from similar databases it knows about. In general, it is more intelligent and less 
reliant on human intervention. A long-term goal is that, as a suite of code gener- 
ators and wrappers is added to the P/FDM Mediator, it will become easy to add 
new resources by presenting the mediator with new remote schemas and specifying 
which code generators and wrappers should be used. 

9.3 CONCLUSIONS 

The P/FDM Mediator is a computer program that supports transparent and in- 
tegrated access to different data collections and resources. Ad hoc queries can be 
asked against an integration schema, which is a pre-defined collection of entity 
classes, attributes, and relationships. The integration schema can be extended at 
any time by adding declarative descriptions of new data resources to the mediator's 
set-up files. 

Rather than building a data warehouse, the developed system brings data 
from remote sites on demand. The P/FDM Mediator arranges for this to happen 
without further human intervention. The presented approach preserves the auton- 
omy of the external data resources and makes use of existing search capabilities 
implemented in those systems. 

Bioinformatics faces a "crisis of data integration" [1], which is best addressed 
through federations that allow their constituent databases to develop autono- 
mously and independently. The existence of schemas at different levels, as shown 
in Section 9.1.3, makes apparent the requirements for query transformation in a 
mediator in a database federation. The transformations in the system are all based 
on well-defined mathematical theory using function composition, as pioneered by 
Shipman [2] and Buneman [12]. This results in a modular design for the mediator 
that enables the federation to evolve incrementally. 
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DNA microarrays have emerged as the leading technology for measuring gene 
expression, primarily because of their high throughput. A single microarray ex- 
periment provides measurements for the messenger RNA (mRNA) transcription 
level for tens of thousands of genes in parallel [1]. While this technology opens 
new opportunities for functional genomics and drug discovery applications, it 
also presents new bioinformatics and data management challenges arising from 
the need to capture, organize, interpret, and archive vast amounts of experimental 
data. Furthermore, to support meaningful biological reasoning, gene expression 
data need to be analyzed in the context of rich sample and gene annotations. 

GeneExpress is a data management system that contains quantitative gene 
expression information for thousands of normal and diseased samples and for 
experimental animal model and cellular tissues generated under a variety of treat- 
ment conditions [2]. Initially the GeneExpress system was developed with the goal 
of supporting effective exploration, analysis, and management of gene expression 
data generated at Gene Logic using the Affymetrix GeneChip platform [3], inte- 
grated with comprehensive information on samples, clinical profiles, and rich gene 
annotations. Building such a system required resolving various data integration 
problems to associate gene expression data with sample data and gene annota- 
tions. A subsequent goal for the GeneExpress system was to provide support for 
incorporating gene expression data generated outside of Gene Logic. Addressing 
this additional goal required the resolution of various levels of syntactic and se- 
mantic heterogeneity of sample data, gene annotations, and gene expression data, 
which were often generated under different experimental conditions. These goals 
have been addressed using a data warehousing methodology adapted to the special 
requirements of the gene expression domain [4]. 



10 Integration Challenges in Gene Expression Data Management 
2 7 8  ~ ~ ~ ~  ~ = ~ ~  ~ ~:~ ~ ~ ~ ~ ~ ~ ~ ~ ~ =  

This chapter discusses the challenges associated with data integration in the 
context of a gene expression data management system and describes how the 
GeneExpress system addresses these challenges. Section 10.1 provides an overview 
of the area of gene expression data management. Section 10.2 provides a brief 
description of Gene Logic's GeneExpress system. Section 10.3 discusses the key 
semantic problems associated with integrating gene expression and related data 
and how they are addressed in the context of GeneExpress. Section 10.4 describes 
how third-party gene expression data can be integrated into GeneExpress. A sum- 
mary and observations in Section 10.5 concludes the chapter. 

10.1 GENE EXPRESSION DATA MANAGEMENT: 
BACKGROUND 

The gene expression data application is reviewed briefly in this section. First dis- 
cussed are the data spaces that need to be modeled by a gene expression data 
management system, then initiatives to establish standards for gene expression 
and related data. 

10.1.1 Gene Expression Data Spaces 
Gene expression systems measure mRNA transcription level of protein-coding 
genes in a cell. The mRNA mix used in gene expression experiments is derived 
from biomaterials (samples) such as tissues and cell lines. A microarray typically 
is designed to detect thousands of specific target sequences associated with these 
genes through hybridization. The reported measurements are meaningful only 
when something is known about the samples and the target sequences and their 
associated genes. The first goal of gene expression data management is to integrate 
expression data with sample and gene annotations and to allow users to use these 
annotations to explore, analyze, and interpret expression data [4, 5]. Typically, a 
gene expression data management system integrates data from three different data 
spaces: sample annotations, gene annotations, and gene expression measurements, 
each of which is described in the following sections. 

Biological Sample Data Space 
The main object in the sample data space is the sample representing the biological 
material that is the focus of an experiment. Samples originate from a variety of 
sources with different data standards and handling protocols. Annotations asso- 
ciated with each sample should address its physical features and quality, as well 
as the accuracy and extent of the information recorded. Ultimately, sample data 
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are recorded in the sample data space of a gene expression system. A sample 
can be of tissue, cell, or processed RNA type, and it originates from a donor or- 
ganism of a given species (e.g., human, mouse, rat). Attributes associated with 
samples describe their nature and condition (e.g., organ site, diagnosis, disease, 
stage of disease), as well as donor information (e.g., demographic and clinical 
record for human donors or strain, genetic modification, and treatment informa- 
tion for animal donors). Samples are commonly organized in groups that can be 
further grouped into studies or projects, such as time/dose studies. Information 
on how samples in such groups are related to one another is therefore a necessary 
annotation for the sample data space. 

Gene Annotations Data Space 
Gene annotations help to associate the expression data reported for sequence 
fragments on a microarray to biological entities such as genes and proteins. The 
main problem here is that sequence annotations, and annotations of the func- 
tion of known genes, can change over time as the availability of more sequence, 
better computational tools, and new research lead to better gene prediction re- 
suits. Furthermore, the sources for gene annotations are usually primary or con- 
solidated databases that are heterogeneous and may contain inconsistent data. 
Consequently, the effort of keeping up-to-date gene annotation data for sequence 
fragments on microarrays combines the complexities of database integration with 
the ongoing research in the field of gene identification. 

The main object in the gene annotation data space is the gene fragment, repre- 
senting an entity for which the expression level is being determined. For microarray 
technologies, gene fragments are associated with a specific microarray type, such 
as a GeneChip human probe array (e.g., HG_U95A). The annotations associated 
with a gene fragment describe its biological context, including its associated pri- 
mary expressed sequence tag (EST) sequence entry in GenBank; membership in a 
gene-oriented sequence cluster; association with a known gene (i.e., a gene that is 
recorded in an official nomenclature catalog, such as the Human Gene Nomencla- 
ture Database [HUGO] [6]); functional characterization, such as Gene Ontology 
(GO) annotations; and association to known metabolic and signaling pathways. 

Gene Expression Measurement Data Space 
Gene expression microarray systems are broadly classified into single channel and 
two channel systems. A single channel system takes a single sample of biological 
material and provides absolute measures of gene expression for that sample, while 
a two channel system takes a pair of samples and provides measurements of the 
difference in relative gene expression between them. Single channel systems are 
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best represented by the Affymetrix GeneChip platform [7]. This chapter focuses on 
the management of gene expression data generated using the GeneChip platform. 
Note, however, that most data management and integration issues discussed in 
this chapter apply to gene expression data in general, regardless of the underlying 
technology platform. 

Typically, data generated by a microarray system can be classified into three 
data types, each representing a different level of abstraction. This hierarchy of data 
types is common, with slight differences, to all microarray platforms and consists 
of: 

1. Raw data consisting of binary image files generated by scanners 

2. Grid or probe intensity data consisting of values associated with each probe 
or oligonucleotide sequence examined on a microarray 

3. Gene expression estimates generated by combining data on related probes on 
a microarray 

Each data type may have multiple data formats or representations associated with 
it, such as text or binary file-based formats or database representations. 

The transformation between data types is carried out by platform-specific 
algorithms. It is not uncommon to use more than one algorithm to transform data 
from one data type to the next [8, 9]. The following paragraphs briefly describe 
the hierarchy of data types in the context of the GeneChip platform. 

Affymetrix's GeneChip microarrays (also called probe arrays) are tiled with 
oligonucleotide sequences, each 25 base-pairs in length, known as probes. Each 
probe is designed to hybridize to a known mRNA fragment representing a target 
gene or EST. Probes are grouped into probe pairs, each of which consists of a 
perfect-match (PM) and a mismatch (MM) probe, with the MM probe being 
created from the PM probe by changing the middle (13 th) base to measure non- 
specific binding. Each target gene or EST is represented by a probe set consisting 
of up to 20 probe pairs. 

A GeneChip probe array experiment involves preparing the RNA sample, 
carrying out the probe array experiment (hybridization, washing, staining), and 
scanning the probe array [7]. The scanning process generates a file containing an 
image of the probe array, which constitutes the raw data. 

The scanned images are interpreted using methods such as the GeneChip 
microarray suite (MAS) analysis algorithms. The MAS cell averaging algorithm 
averages pixel intensities and computes cell-level intensities in which each cell 
represents one probe on the probe array. The output from this process is a file 
containing the estimated intensities for each probe on the probe array, which 
constitutes the probe data. These intensities indicate the amount of hybridization 
that occurred for each oligonucleotide sequence on the array. 
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10.1.2 

Probe intensity files can be further analyzed with methods such as the MAS 
chip analysis algorithms, which generate gene expression estimates by summariz- 
ing the intensities of each probe set that corresponds to a gene or EST fragment 
targeted by the probe array. Alternative gene expression estimates may be based 
on single or multiple (e.g., replicate) experiments. 

The GeneChip Laboratory Information Management System (LIMS) provides 
support for transforming data between the different data types and for loading 
the gene expression estimates into a relational database based on the Affymetrix 
Analysis Data Model (AADM) [10]. 

The different data types and their associated formats result in files or data 
structures of different sizes. For example, for an experiment using an HG_U133 
GeneChip probe array, the raw image file is around 45 megabytes in size, the probe 
intensity data file is around 12 megabytes, and the summarized gene expression 
data consists of roughly 22,000 values. 

Standards: Benefits and Limitations 
Effective exploration of microarray data has been hindered by the variety and het- 
erogeneity of the data formats used. This problem has been recognized by several 
organizations, such as the European Bioinformatics Institute (EBI), the U.S. Na- 
tional Center for Biotechnology Information (NCBI), and the National Center for 
Genome Resources (NCGR), in their efforts to establish public data repositories 
for gene expression information. Microarray manufacturers have also proposed 
formats, such as the AADM used for the GeneChip LIMS relational database [10], 
to facilitate data exchange between different sources of gene expression data and 
the development of gene expression analysis packages. 

Different standardization efforts have been consolidated by the Microarray 
Gene Expression Database Group (MGED), a consortium of academic and com- 
mercial organizations with the shared goal of defining standard formats that 
will allow gene expression data repositories to share and exchange data. MGED 
has recently published Minimum Information About a Microarray Experiment 
(MIAME), a recommendation for the minimum information required for a mi- 
croarray experiment [5], and has developed a data exchange format (Microarray 
Gene Expression Markup Language [MAGE-ML]) and object model (Microarray 
Gene Expression Object Model [MAGE-OM]) for microarray experiment data. 

Existing definitions and proposed standards for gene expression data provide 
useful guidelines for organizing expression data in systems such as GeneExpress. 
Adequate standards for the representation of sample and gene annotations, how- 
ever, have not yet been established. MIAME's recommended standards for gene 
annotation for the fragments on a microarray are minimal to simplify compliance. 
For example, the suggested annotations for probes on a microarray consist of their 
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identity, sequence, and the associated composite target sequence, along with gene 
symbol or reference to a model organism database. However, in-depth gene ex- 
pression data analysis requires access to functional characteristics of these target 
gene fragments to interpret data analysis results. 

Similarly, MIAME's minimum required sample annotations are not sufficient 
to establish the context needed for comprehensive gene expression data analysis. 
Clinical history, morphology, and pathology for samples are needed to interpret 
gene expression data. For example, it is necessary to know the precise stage of a 
tumor or medications taken during acquisition of a cancerous sample to interpret 
expression measurements for the sample. 

For sample data, standardization involves establishing controlled vocabular- 
ies of terms for specific data domains, such as the Systematized Nomenclature 
for Medicine (SNOMED) [11] for anatomy or diseases. These efforts are usually 
sponsored by professional organizations within a specific field (e.g., SNOMED is 
supported by the College of American Pathologists) and are not easily accessible 
to academic organizations because of their associated costs. 

For gene annotations, the most notable standardization effort is the devel- 
opment of the Gene Ontology (GO) by the GO Consortium [12]. The goal of 
GO is to provide a dynamic controlled vocabulary to describe the role of genes 
and gene products in terms of molecular function, biological process, and cellular 
components. 

Data exchange formats or standards emphasize the syntactic aspects of ex- 
pression data and, to a lesser degree, the meaning of the data in cases where the 
representation is well documented. However, these formats do not address the 
semantic issues regarding the comparability (or compatibility) of gene expression 
data. Data comparability is a prerequisite for analyzing expression data from mul- 
tiple experiments or multiple sites together and is discussed in Section 10.3. 

10.2 THE GENEEXPRESS SYSTEM 

Gene Logic's GeneExpress system provides support for managing expression data 
generated using the Affymetrix GeneChip platform in a high throughput produc- 
tion environment. Sample, gene annotation, and gene expression data are collected 
from separate data sources: Sample data are collected and managed using a sample 
data management system; gene annotations are acquired from a variety of public 
and private genome databases and integrated into a gene annotation database; 
and the main source for gene expression data is an Affymetrix GeneChip LIMS 
database. GeneExpress was built using data warehousing and online analytical 
processing (OLAP) concepts adapted to the gene expression data domain [4]. 
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10.2.2 

GeneExpress System Components 
The GeneExpress data store consists of the GeneExpress Data Warehouse 
(GXDW). GXDW is made up of component databases containing sample, gene 
annotation, and gene expression data and process information specific to the gen- 
eration and analysis of the expression data [13]. 

The gene expression data in GXDW is represented by a three-dimensional 
array with expression values indexed by gene fragments (identified by their target 
sequence and the microarray type), samples, and algorithm or measurement type. 
This data structure is implemented by the Gene Expression Array (GXA) as a 
collection of matrices, each associated with a particular GeneChip probe array type 
(e.g., HG_U95A) and measurement type (e.g., a version of the MAS algorithm). 
Each matrix has axes representing samples and gene fragments. The GXA provides 
a basis for the GeneExpress Analysis Engine, which implements various analysis 
methods in a highly efficient manner. 

The GXDW, GXA, and Analysis Engine applications reside on a GeneExpress 
server. The server also hosts the Workspace File System, which allows users to 
store analysis results and share them throughout an organization. 

Data in GXDW can be accessed using the GeneExpress Explorer application, 
which provides support for specifying gene and sample sets of interest and for 
analyzing gene expression data in the context of such gene and sample sets using a 
variety of analysis tools. GeneExpress Explorer is implemented as a client-side Java 
application, which runs on desktops and accesses GXDW through Java DataBase 
Connectivity (JDBC) and the analysis server through a CORBA layer. The main 
components and architecture of the GeneExpress system are illustrated in Figure 
10.1. The results of gene expression analysis can be examined in the context of 
gene annotations, such as pathways, and can be exported to third-party tools, 
such as Spotfire, GeneSpring, or Partek, for visualization or further analysis. The 
gene expression and associated data can also be accessed directly through Applica- 
tion Programming Interfaces (APIs), which are available for a number of popular 
programming languages and platforms. 

GeneExpress Deployment and Update Issues 
In most cases, a GeneExpress system for a particular customer resides on a dedi- 
cated server. These machines are either deployed at the customer site and connected 
to the customer's internal network, or they are located at Gene Logic and accessed 
via a Virtual Private Network (VPN) mechanism. The data content of each Gene- 
Express system, involving both GXDW and the GXA matrices, is updated on a 
regular schedule (e.g., bi-monthly or quarterly). 
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10.1 

FIGURE 

GeneExpress System Architecture. 

The sample, process, and gene expression data components of GXDW are 
built by extracting the data for the relevant samples from a master production 
version of GXDW, which is maintained at Gene Logic. The subset of samples pro- 
vided to each GeneExpress customer is determined by the specific GeneExpress 
product license for the customer and will usually contain new samples that have 
been processed by Gene Logic since the last content update. The sample, process, 
and gene expression portions of the production GXDW are maintained in an in- 
cremental fashion, with new samples and experiments being added as they become 
available. Similarly, the set of GXA matrices for a particular customer is built by 
extracting the portions of the internal production GXA matrices that pertain to 
the samples being supplied to the customer. 

The update mechanism for the gene annotation data component of GXDW 
is somewhat different. To keep abreast of current genomic data available in the 
public domain, it is necessary to refresh the gene annotation database periodically. 
The static portion of the data, such as gene fragments and array design, will not 
change unless new arrays are introduced. However, links to genes and all the public 
genomic objects may change to reflect new versions of their data sources. Because 
of the complex interdependencies of the various genomic data sources and the fact 
that many such data sources do not provide incremental updates, it is not feasible 
to update the gene annotation database in an incremental fashion. Instead, it must 
be completely reloaded each time it is refreshed. This process is usually performed 
on a quarterly basis because of the high overhead involved. 



10.3 Managing Gene Expression Data: Integration Challenges 285 

10.3 MANAGING GENE EXPRESSION DATA: 
INTEGRATION CHALLENGES 

This section presents some of the key challenges that arise from the management 
of gene expression and related data and briefly describes how each of these chal- 
lenges is addressed in the GeneExpress system. Many of these challenges involve 
resolving semantic conflicts in gene expression, sample, and gene annotation data 
to integrate these data in a gene expression data management system. This section 
discusses the data management problems caused by differences in microarray ver- 
sions, differences in algorithms and normalizations, and non-biological variability 
in expression data are discussed first, followed by challenges regarding sample data 
and gene annotation data. 

10.3.1 Gene Expression Data" Array Versions 
Microarray platforms keep evolving with new probe array versions benefiting 
from technological improvements (e.g., higher density arrays and better probe 
selection) and advances in deciphering the genome. For example, Affymetrix re- 
cently released the HG_U133 series of the human probe arrays, which replaced 
the previous HG_U95 series of arrays. Running the same or similar samples on 
two series of probe arrays doubles the amount of data generated. However, in 
many cases, this is necessary because the newer arrays may produce expression 
data for target transcript sequences that are not available on the previous versions. 
In addition, there may be multiple versions of a probe array within a particular 
array series if problems are discovered with a particular array (e.g., HG_U95A 
versions 1 and 2 within the HG_U95 series). Comparing data generated using 
different series of probe arrays entails addressing a complex semantic data inte- 
gration problem, with gene annotation data providing only partial support for 
resolving it. 

In general, data generated using different probe array series or versions are 
not comparable, nor can they be transformed to make them comparable. This 
is in part due to the selection of target genes and ESTs for new probe arrays, 
which are often based on newly published biological information. Furthermore, 
representative probes for the target genes on the new probe arrays may be differ- 
ent due to availability of better representative sequences or improved techniques 
for choosing oligos within a representative sequence. New probe arrays may also 
be associated with improved analysis algorithms for determining summary inten- 
sity values, which will not be directly comparable with older algorithms. Con- 
sequently, in order to allow comparison of gene expression data generated for 
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new samples using new probe arrays with data for existing samples, it is nec- 
essary to re-run the existing samples using the new probe array versions and 
algorithms. 

On the other hand, it is often still valuable to maintain data generated using 
older probe arrays because they may provide the basis for existing analyses or 
prediction models, which users do not wish to re-create, because sample material 
may no longer be available for re-running the experiments using new arrays, or 
because samples may no longer be considered important enough to warrant re- 
running them using new arrays. Further, older probe arrays may include gene 
fragments of interest that have been omitted or do not have a good representation 
on the newer arrays. 

GeneExpress supports multiple probe array sets for each species and allows 
users to choose a probe array set in addition to a species when performing anal- 
yses. Annotations associating homologous or related gene fragments on different 
versions of a probe array are provided in the gene annotation database of GXDW 
and can be used to map fragments on a given probe array to fragments on another 
version of the probe array. Direct comparisons of gene expression data based on 
different probe arrays are not supported. 

The amount of data generated with multiple probe array versions is kept 
manageable, in part, because GXDW and GXA contain only the estimates for 
expression measures and gene-level summary data. Images and probe intensity 
files are archived on an enterprise network-accessed storage system and are not 
incorporated into standard GeneExpress systems. When a new algorithm or a new 
probe array version needs to be supported within GeneExpress, the information 
describing the probe array design must be entered in the gene expression data 
space and a new matrix included in the GXA. 

10.3.2 Gene Expression Data" Algorithms 
and Normalization 

Different algorithms can be applied to generate gene expression data at differ- 
ent levels including image, probe level, and gene expression estimate data. For 
example, recently several alternative methods have been developed to estimate ex- 
pression measures from probe data ([8, 9]) in addition to Affymetrix' GeneChip 
MAS algorithms. For GeneChip, the MAS 5.0 algorithm has recently replaced 
the MAS 4.0 algorithm and is required for analyzing the data generated with the 
newer versions of probe arrays. To take advantage of a new or alternative algo- 
rithm, it is necessary to re-analyze raw or probe data and generate new estimates 
of gene expression. It is important to note that expression estimates generated 
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by different algorithms are not directly comparable. Furthermore, some algo- 
rithms depend on certain parameters that may also affect the generated expression 
estimates. 

In GeneExpress, a number of factors are recorded that may determine the 
comparability of expression data, including the following. 

1. The algorithms employed to generate expression estimates, namely MAS 4.0 
(employed for all probe arrays through the end of 2001) or MAS 5.0 (required 
for the new HG-U133 probe arrays and optional for other probe arrays) are 
recorded. Data generated using different algorithms are not comparable. 

2. Scaling factors used to reduce discrepancies caused by sample preparation or 
probe array lot variability are also recorded. Data generated using different 
scaling factors are transformed to a common factor using straightforward 
multiplication. 

3. Normalizations, that may be applied to the values generated by the MAS 
or other algorithms are recorded: GeneExpress provides support for several 
normalization methods including Standard Curve Normalization, based on 
using spike-ins of known concentrations for certain (bacterial) genes when 
preparing samples for experiments [14]. Data must be generated using the 
same normalization to be comparable. 

The Gene Expression analysis software, GeneExpress Explorer, ensures that data 
analyzed together have been generated using the same algorithms and normaliza- 
tion methods. 

10.3.3 Gene Expression Data" Variability 
Determining if gene expression data from two or more sources, such as different 
organizations or different sites within an organization, are comparable involves 
assessing non-biological differences that may affect analysis results. While gene- 
to-gene differences and sample-to-sample differences will be present in any set 
of experimental data, it is important to determine if there are other significant 
sources of variability. Many factors may contribute to such variability, including 
differences in the processes for obtaining and storing samples; differences in ex- 
perimental practices and techniques; differences in adjustment of equipment, such 
as scanners; and so on. 

Statistical methods are used to identify the magnitude and qualitative nature 
of non-biological variability. Initial exploration ideally involves samples collected 
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from the same type of tissue (i.e., from the same type of organ and a similar location 
in the organ) and with the same pathology. In this case, data comparability can be 
assessed using the entire set of genes involved in the experiments. If samples are 
from the same type of tissue but with different pathologies, data comparability 
can be assessed using only genes that are not likely to be involved in the biological 
difference between the two groups of samples. 

Exploratory statistical techniques employed for assessing the comparability of 
such samples include univariate (single experiment) and bivariate (pairs of experi- 
ments) analyses. One simple way to compare numerous univariate distributions is 
by displaying boxplots of the distributions side by side [15]. Such boxplots would 
indicate whether there are significant effects due to, for example, scaling or satura- 
tion, which would result in a shift in the distribution of expression values. Further 
exploration would involve assessing the reproducibility of expression values be- 
tween experiments and the variability of expression values within each group of 
experiments and between groups of experiments. 

Gene Logic limits non-biological sources of variability in the gene expression 
data it generates by following strictly controlled procedures and monitoring the 
quality control measures, both for running experiments and for the collection and 
preparation of samples. Once data are generated from experiments, quality control 
procedures based on statistical methods are used to ensure that data included in 
GeneExpress are not unduly affected by non-biological factors. 

Sample Data 
Accurate and consistent characterization of samples is essential in dealing with 
gene expression data because errors can have a substantial effect on expression 
analysis. It is not sufficient to base sample classification solely on annotations 
provided by the supplier because (1) samples may be mis-labeled (e.g., a diseased 
tissue being labeled as normal) and (2) there may be inconsistencies of classifi- 
cation due to the perspective of the pathologist or scientist who did the initial 
labeling. In the GeneExpress system sample classification validation involves a 
careful review of the micro-section images by a pathologist and a thorough re- 
view of the clinical information accompanying each sample. Using SNOMED 
[11], the sample can be further characterized by topography, morphology, dis- 
ease, and disease stage. The use of SNOMED and other controlled vocabularies 
in the GeneExpress system leads to a more robust classification of samples and 
provides a consistent representation of the data to users. However, even with 
an established controlled vocabulary such as SNOMED, the choice of terms to 
characterize a tissue type or disease may be ambiguous, so Gene Logic's pathol- 
ogists use a consistent system of rules to determine which SNOMED terms to 
use. 
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10.3.5 Gene Annotations 
Associating gene fragments with annotations from various public and private data 
sources provides the genomic context for interpreting gene expression data. In- 
tegrating such annotations into a data warehouse, as opposed to accessing the 
remote data sources through a federated database approach (see, for example, 
Eckman et al.'s article in Bioinformatics [16]), allows better representation of the 
semantics, powerful query expression, improved query performance, and also al- 
lows the quality of the data to be checked during the integration process (a similar 
conclusion is reached in an IBM Systems Journal article by Davidson et al. [17]). 
Acquiring gene annotations from various data sources involves identifying im- 
portant and reliable data sources, regularly querying these sources, parsing and 
interpreting the results, and establishing associations between related entities, such 
as the correlation of gene fragments and known genes. 

Gene annotation or gene index databases are generally based on data col- 
lected from well-established and reliable public data sources. For example, gene 
fragments can be organized in non-redundant classes based on UniGene, and as- 
sociated with known genes recorded in LocusLink. However, such data sources 
may not contain genomic information for all species: Some may provide good 
human and mouse gene annotations but not cover other species such as yeast or 
rat. In such cases, it is necessary either to find alternative data sources or to derive 
gene annotations for these species by finding homologous genes on better anno- 
tated species, such as human or mouse. The choice of which approach to use may 
change from time to time depending on the availability of annotations. 

Gene fragments are further associated with gene products (e.g., protein data 
from Swiss-Prot), GO ontology terms, enzymes, metabolic and signaling pathways, 
chromosome maps, genomic contigs, and cross-species gene homologies. For ge- 
nomic information such as pathways, there is no unique data source that satisfies 
all needs. For example, the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
provides good metabolic pathways, but it is not complete, while other public or 
private pathway data sources provide valuable additional data. Integration of sim- 
ilar or potentially overlapping data from two or more data sources requires the 
potential problems of redundant and inconsistent data to be addressed. 

Genomic data sources are usually updated on different schedules, and the size 
of such data sources usually prohibits all versions of a data source from being 
loaded into a data warehouse. The gene annotation component of the GeneEx- 
press data warehouse contains more than 5 gigabytes of data with only the most 
current version of data collected from various data sources. However, storing data 
from only one version of a data source may lead to inconsistencies; one source 
may reference entities in a different version of another data source, which may 
have been updated or may no longer exist. Further, data sources may change their 
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data structure or schema between versions (e.g., adding, removing, or modifying 
attributes or fields). In addition, keywords can be changed, and data files can 
be reorganized. Such changes necessitate revisions of data collection tools and 
reconciliation of data mappings. 

The gene annotation component of GXDW provides an integrated view of 
the genomic data space, based on a unified schema that spans the various object 
spaces relevant to each of the public or private data sources used. One key feature 
of the schema is that it models the primary objects from the genomic data space in 
a generic way, though such objects originate from a wide variety of data sources. 
This minimizes the frequency of schema changes needed, even as the structures of 
the primary data sources evolve. 

To keep up-to-date with the evolving gene annotation data sources, the gene 
annotation component of GXDW is refreshed periodically. Each refresh involves 
extracting data from the latest versions of more than a dozen relevant pub- 
lic and private data sources, including UniGene, LocusLink, Swiss-Prot, Online 
Mendelian Inheritance in Man (OMIM), Enzyme, GO, KEGG, proprietary path- 
way databases, and model organism genome databases for organisms such as 
E. coli and yeast. During the integration and the assembly process, various data 
transformations and data cleansing operations are performed to resolve conflicts 
and correct data errors. Due to the rapidly evolving nature of these data sources, 
their content may change, both syntactically and semantically, between refreshes. 
Consequently, establishing cross-database links often requires manual curation to 
deal with orphans and links to retired entries. For example, LocusLink may refer 
to an Enzyme Commission (EC) number that is obsolete in the Enzyme catalog 
database, in which case it will be necessary to identify the correct, current EC 
number and update the data sources. 

The data-warehousing strategy employed for constructing and maintaining 
GXDW supports various derived annotations such as cross-species homology re- 
lations between genes of different organisms and other objects. This is particularly 
valuable for comparative expression analysis between model organisms. The inte- 
gration of genomic data sources helps uncover non-obvious relationships between 
genes, such as co-clustered gene fragments, and covers large parts of the genome -> 
transcriptome -> proteome -> metabolome information needed for gene expression 
analysis. 

Due to the rapidly changing nature of the gene annotation data and data 
sources, it is important to search continually for new sources of gene annotation 
data and to re-evaluate existing data sources. When a new data source is considered 
for GeneExpress, decisions must be made regarding whether the new data source 
can or will replace any existing data source, whether existing curation methods 
must be modified, whether the data model or schema needs to be revised, and how 
existing data should be associated with data from the new source. 
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10.4 INTEGRATING THIRD-PARTY GENE 
EXPRESSION DATA IN GENEEXPRESS 

The GeneExpress system was originally developed for the purpose of managing, 
exploring, and analyzing gene expression data generated at Gene Logic, primarily 
using the Affymetrix GeneChip platform. However, as the system has been adopted 
by various customers, some of which have their own internal efforts to generate 
gene expression data, the need to integrate customer data into the GXDW, so as 
to enable analysis of Gene Logic and customer gene expression data together, has 
become apparent. 

To support the integration of customer sample and gene expression data into 
GeneExpress, the GX Connect tool has been developed at Gene Logic. GX Con- 
nect supports integration of gene expression data residing in an AADM-based 
GeneChip LIMS database and sample data conforming to the Gene Express Sam- 
ple Data Exchange Format into GXDW. When there is a need to integrate gene 
annotation data, 1 gene expression data represented using alternative formats, or 
data that, for other reasons, cannot be integrated using GX Connect, custom data 
integration tools are developed. 

The following section discusses some of the challenges involved in integrating 
customer gene expression data with Gene Logic data and how these challenges 
have been addressed in the context of GeneExpress. First, data exchange formats 
that simplify the tasks of developing and maintaining mappings of customer data 
to GXDW are described. Next described are some of the structural and semantic 
data transformation issues involved in developing such mappings. Finally, some of 
the data management issues associated with data loading and updating the Gene 
Logic content of a system containing both Gene Logic and customer data conclude 
the discussion. 

10.4.1 Data Exchange Formats 
To avoid developing and maintaining multiple data migration and loading tools 
for each external data source considered for integration, data exchange formats 
serve as intermediate representations for data being transferred from various data 
sources to the GeneExpress data warehouse. The process of integrating external 
data is then divided into two phases: (1) structural transformations and semantic 
mappings need to be applied to the external data to convert them into the data 

1. Data exchange formats and integration tools for gene annotation data are planned for future versions 
of GX Connect. 



exchange formats; (2) the data in the data exchange formats needs to be loaded 
into the warehouse. Note that developing and maintaining tools that convert data 
from sources into a well-defined data format, such as one based on extensible 
markup language (XML) or a similar notation, is generally easier than developing 
tools to transform data and populate a target data warehouse. 

A number of formats have been proposed for gene expression data, as men- 
tioned in Section 10.1.2. Because the focus was so far on integrating Affymetrix 
GeneChip expression data into GeneExpress, Affymetrix model AADM [10] was 
used as the data exchange format for gene expression data. In this format, ex- 
pression data are associated with samples, gene fragments, analysis methods, and 
various experimental parameters. 

For sample and clinical data, standard formats such as AADM have not yet 
been established. Consequently, data exchange formats that satisfy GX require- 
ments were defined. 

The central object class of the sample data exchange format is sample, repre- 
senting the biological materials (e.g., tissue or cell-line) investigated using probe 
arrays (see Figure 10.2). Attributes associated with samples may describe their 
structural and morphological characteristics (e.g., organ site, diagnosis, disease, 
stage of disease). A sample is associated with a donor (e.g., a human or an animal 
model), which may in turn be qualified by various treatments and has additional 
attributes (e.g., clinical records and demographics for human donors or strain 
and genetic modification for animal donors). Each sample may be associated with 
several experiments (e.g., using different chip types). Samples may be grouped 
into studies, which may be further subdivided into study groups based on time or 
treatment parameters. 

Various classes in the sample data exchange format include catch-all attributes 
that can accommodate any data, represented as tagged-value pairs, that do not 
otherwise fit the format. 

For data represented in the data exchange formats described previously, the 
GX Connect tool can be used to control and automate the process of data transfer 
into the GeneExpress warehouse [2]. This tool can be deployed at customer sites 
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Sample data exchange format. 
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and be used to perform incremental (e.g., nightly) updates to GXDW. Conse- 
quently, the main task associated with integrating customer data becomes defining 
and implementing the semantic and structural transformations necessary to con- 
vert customer data into the data exchange formats, to prepare them for loading 
into GXDW. 

Structural Data Transformation Issues 
Data from individual data sources may be supplied in a flattened or un-normalized 
form, such as Microsoft Excel spreadsheets, so determining their structure and 
how to map them to the various data exchange formats is often a complex and 
involved task. First, it is necessary to determine the dependencies and correlations 
between individual data objects, which may be provided during the data export 
process or may need to be determined by searching for patterns in the data. In 
either case, it is necessary to confirm that the correlations found are consistent 
with the intended semantics of the data. 

Data dependencies and correlations can be used to form an object model for 
the source data and to define a mapping from this model to the data exchange 
formats. Defining such a mapping requires structural conflicts between the models 
to be resolved, and in some cases, it may be necessary to choose between several 
possible solutions. 

For example, the GeneExpress sample data exchange format classifies samples 
in a two-level hierarchy, with the levels represented by the classes Study and Study- 
Group. Sample data exported from an external data source might employ a three- 
level hierarchy, such as Project, Study, and Treatment. There are two possible 
ways to resolve such a difference in structure: Either combine the exported Study 
and Treatment classes into the sample data exchange format Study-Group class 
and map the exported Project class to sample data exchange format Study class 
or map the exported Project and Study classes to sample data exchange format 
Study class and the Treatment class to the Study-Group class. 

In addition, it is necessary to deal with the evolution of databases and formats 
over time. Both the external data sources and the GeneExpress data warehouse 
may change either their structure or their controlled vocabularies or data formats 
to reflect changes in requirements. These changes require updates to the mappings. 

Semantic Data Mapping Issues 
For gene expression data, the semantic challenges of integrating data from multiple 
sources are similar to those described in section 10.3. Experimental data from 
different platforms are generally not comparable. Even if experiments are from 
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the same platform, expression values may have to be adjusted (e.g., to compensate 
for different scanner settings) before they can be compared. Moreover, expression 
data will not be comparable unless they are analyzed using the same version of a 
probe array and the same algorithm. 

The mappings for sample data are usually the most difficult because there is 
no widely accepted standard for representing clinical data [18]. In the following 
sections some of the problems of mapping sample and gene annotation data are 
discussed. 

Sample Data Mapping: Studies 
Expression data are often organized into studies. For Gene Logic data, studies 
are used to group data that address specific questions about the effects of certain 
variables (such as treatment conditions, disease stage, time, and so on) on gene 
expression levels. Studies may be further divided into study groups, which repre- 
sent samples grouped according to certain attributes, such as specific treatment 
conditions, time points, or disease stages. 

The structure and nature of a study performed outside of Gene Logic may be 
conceptually different from studies defined in the context of GeneExpress data. 
To group customer samples into studies or study groups, it is necessary to identify 
an equivalent structure in the source sample data model, which may use different 
terminology or organize data along different principles. If there is no appropriate 
concept in the source data model, rules can be incorporated into the mapping from 
the source data model into the sample data exchange format, allowing studies and 
study groups to be created based on other source data attributes, such as tissue 
type or treatment. Alternatively, customer data can be organized into studies and 
study groups manually by editing the data once they have been converted to the 
sample data exchange format. 

Sample Data Mapping: Nomenclature 
To map individual sample data values to the sample data exchange format, dif- 
ferences of nomenclature, units, and formatting must be resolved. Differences in 
nomenclature are the most difficult to deal with, and often there is no single, 
optimal resolution for such differences. Various attributes in the data exchange 
formats are represented using controlled vocabularies. In particular, in the sample 
data exchange format, sample organ types, pathologies, and disease diagnoses are 
represented using subsets of the SNOMED vocabulary [11]. 

External sample data repositories often use their own vocabularies for such 
concepts, and even within a given standard such as SNOMED, different patholo- 
gists or other experts may not agree on which term should be used for a certain 
disease or organ type. For example, in a recent integration project, a customer 
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included samples with the diagnosis labeled DIABETES. The SNOMED vocab- 
ulary includes several varieties of diabetes and related complications, so it was 
necessary to consult with the customer to determine the best choice of mapping. 
After some discussion it was determined that, given the differences of interpre- 
tations, the best choice was to map this to the term OBESITY in GeneExpress. 
Similarly, the customer data might include abbreviations, such as DRG, which was 
mapped to DORSAL ROOT GANGLION, or common terms, such as FAT, which 
was mapped to ADIPOSE TISSUE. Moreover, a SNOMED term code is usually 
associated with one primary term and one or more synonyms. Some customers 
may prefer a different synonym than the one chosen by Gene Logic. 

Sample data may also differ in the choice of units: For example, drug treat- 
ments can use units such as #Mol or ng/ml, while age can be provided in days, 
weeks, or years. A conversion table is required to map any units to comparable 
units in the sample data exchange format. 

Formatting of individual items also needs to be resolved. For example, the 
sample data exchange format uses the terms Male and Female to represent the sex 
of a donor, while a customer database may use male and female or just M and F. 
Further, data may contain typographic errors, such as misspelling the name of a 
supplier. When vocabularies are small, or for controlled vocabularies, it may be 
possible to spot and correct such errors manually, but in general, these errors can 
go undetected. 

All these conflicts need to be resolved as part of the mapping from the source 
data format to the sample data exchange format. In some cases, it is not possible to 
implement rules to resolve such conflicts automatically, so manual inspection and 
curation of the data must be performed before mapping it. In general, if the source 
data are consistent in their use of controlled vocabularies, formatting, and units, 
it is possible to hardwire the correct mappings into the mapping implementation. 
However, whenever a new conflict arises, it is necessary to find a resolution and 
adapt the mapping implementation. 

Sample mapping provides consistency between Gene Logic and customer sam- 
ple classifications rather than finding an optimal classification. Sample classifica- 
tion in GeneExpress is based on sound clinical and pathology principles in the 
strict framework of the SNOMED nomenclature. However, not all medical con- 
cepts map straightforwardly to SNOMED terms, and therefore, there may not be 
a best classification for a concept but rather several reasonable ones. 

Gene Annotation Data Mapping 
In general, gene annotations are not involved in the integration of expression 
data from multiple sources. In certain cases, however, it is necessary to integrate 
gene annotations associated with non-Gene Logic expression data (e.g., to extend 
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the system to include custom probe arrays with proprietary gene fragments or to 
support a customer's proprietary gene annotation data). 

Gene annotations generally have well understood semantics; although, there 
are ambiguities with regard to the classification of some of these annotations (see 
Pearson's article in Nature [19] for a discussion of problems associated with gene 
nomenclature and identification). 

Because gene annotations are often stored in proprietary databases, a possible 
approach is to provide links to these annotations, instead of importing them into 
GXDW. This approach supports neither the ability to query the contents of these 
databases directly nor superimpose expression data on these annotations (e.g., 
superimpose expression levels associated with genes displayed on a pathway or 
chromosome map), but it can make the information readily accessible from Gene 
Express. In such cases, individual genes within GeneExpress are linked to network- 
accessible reports or interactive services. When query access is required, custom 
gene annotations can be integrated into GeneExpress using a mechanism similar 
to that used for sample data. Defining a mapping remains non-trivial, but as gene 
annotation data are often more rigorously structured than clinical information, 
the problem is usually less severe. 

Another problem specific to gene annotations is the fact that related but differ- 
ent annotations are likely to reside in multiple sources. This introduces a key chal- 
lenge: reconciling differences between different gene annotation sources. When 
different versions of a single source (e.g., UniGene) conflict, it is usually accept- 
able to defer to the newer version. When different sources conflict, there may not 
be an ideal way of resolving the differences. 

In addition, a customer may prefer alternative sources for gene annotation 
data (e.g., protein data sources other than Swiss-Prot or sequence clusters other 
than those provided in UniGene) rather than those used in GeneExpress. Even 
when the same data sources are used, different refresh policies may lead to the 
use of different versions or different builds of the same data source. Furthermore, 
there may be multiple ways to associate two related biological objects (e.g., links 
from gene fragments to known gene clusters may be based on data supplied by the 
probe array manufacturer or on homology searches using the fragment's target 
sequence). Consequently, integrating customer gene annotations with Gene Logic 
gene annotations requires resolving potentially complex data discrepancies. 

Data Loading Issues 
Once data from external data sources have been mapped to the data exchange 
formats, additional processing and curation may be required before integrating 
and loading them into the warehouse. First, it is necessary to detect invalid data, 
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such as missing clinical data associated with samples or inconsistent associations 
of sample and gene expression data. In general, data migration tools, such as GX 
Connect, handle such cases by skipping the data affected by errors and issuing 
warning messages in a log file. Data editing can be used to correct problems not 
resolved during the mapping process. 

Next, differences between identifiers of external objects and objects already 
in the warehouse must be resolved to maintain database consistency. Transfor- 
mations of this type are carried out using staging databases before loading data 
into the warehouse itself. In addition, it is necessary to keep track of any identi- 
fiers created for customer data so that if customer data objects are dropped and 
reloaded (e.g., to allow the data to be edited), they do not reappear with different 
identifiers. 

Finally derived data, such as quality control data (e.g., measures of saturation 
for the scanners), are also computed during the final loading stage. 

Update Issues 
Section 10.2.2 describes the process of updating a GeneExpress system containing 
only Gene Logic data. The content update becomes more complex if the system 
contains both Gene Logic data and customer data, either loaded with the GX 
Connect tool or with custom tools. Both Gene Logic data and customer data 
change over time, therefore content update procedures must ensure that new data 
from both sources are maintained correctly in the GeneExpress data warehouse. 

Data in the GXDW can be classified into: (1) data shared by Gene Logic and 
customer data stores, such as controlled vocabularies; and (2) data that are not 
shared, that is, data generated by either Gene Logic or the customer only. Ex- 
amples of shared data include SNOMED terms and species information in the 
sample database and probe array types and algorithm types in the expression 
database. When performing a content update, shared data occurring in both the 
Gene Logic and the customer data contents must be consolidated. Examples of 
data that are not shared include data pertaining to an individual sample in the 
sample database and experiment expression values in the expression database. It 
is not necessary to merge these data because customer sample and experiment ob- 
jects are always distinct from Gene Logic sample and experiment objects. Instead, 
separate spaces of object identities are maintained for customer and Gene Logic 
data. 

Depending on the nature of the data, a variety of techniques can be used 
for handling updates. For example, because it is not necessary to merge data for 
individual experiments or samples, such as expression values, from different data 
sources, these data can reside in different database partitions. In this case, content 
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update is as simple as replacing a database partition. On the other hand, controlled 
vocabularies and other shared data must be consolidated; therefore, special tools 
are required to reconcile terms in customer and Gene Logic data and to make 
sure they are consistent in the integrated warehouse (e.g., having the same ID 
values). The consolidation process involves resolving the identification of objects 
and terms, as well as object references. 

10.5 SUMMARY 

This chapter provided discussion of the data integration challenges involved in 
building a system for managing gene expression data and how these challenges 
have been addressed in the GeneExpress system and in the context of several 
GeneExpress integration projects. 

A data warehouse approach and tools were used in developing GeneExpress 
and were found to provide an effective environment for developing a system to 
support the integration and management of data from diverse sources, in which 
data may be imprecise and may evolve over time. Other non-warehouse (i.e., non- 
materialized view) approaches were also briefly considered, based on previous 
experience with developing genomic data management systems using the Object 
Protocol Model (OPM) tools [20], but they were not adopted for reasons similar 
to those described by Davidson et al. [17]. The data warehouse approach has 
proven well suited for systems such as GeneExpress that need to integrate data 
from multiple data sources, with data requiring validation and cleansing, and in 
cases where system performance and robustness are critical. However, the general 
data warehouse approach cannot be applied as  is to the gene expression domain 
and needs to be adapted [14]. Also, coping with issues of data semantics in the area 
of genomic applications remains complex and difficult and often requires manual 
solutions. 

Because good performance is a critical requirement for GeneExpress, a com- 
prehensive set of benchmarks has been devised to assess system performance 
continuously as its data content grows. The benchmarks involve running typical 
queries and expression analysis operations on a series of data sets, using vari- 
ous configurations of Sun SparcUltra II- and III-based servers and Pentium-based 
clients. These benchmarks first measure the single-user performance of query and 
analysis operations, then measure multi-user performance with up to 300 simu- 
lated concurrent users, each running analysis steps across all available array types. 
It was found that, given sufficient server system memory, performance for multi- 
ple users scaled linearly with the number of processors and number of concurrent 
USCI'S. 



Trademarks 

Though this chapter has focused on the GeneExpress system and the Affy- 
metrix GeneChip platform, the challenges addressed by the GeneExpress system 
are shared by other systems for managing and analyzing gene expression data. In 
particular, for all gene expression platforms, the problems associated with relating 
the data to gene and sample annotations and issues such as compatibility of array 
versions and analysis algorithms are similar. 

The first version of GeneExpress was released in early 2000. Through the end 
of 2002, the GeneExpress system has evolved through several versions and has 
been deployed at more than 25 biotech and pharmaceutical companies worldwide, 
and at several academic institutions. Based on the experience gained in developing 
tools for incorporating customer data into GeneExpress, the GX Connect tool has 
been developed to provide support for interactive extraction, transformation, and 
loading of gene expression data generated using the Affymetrix GeneChip platform 
and related clinical data into GeneExpress. GeneExpress and GX Connect are 
deployed together as part of the Genesis Enterprise System [2]. 

Five data integration systems that provide support for integrating gene ex- 
pression data from both Gene Logic and customer sources have been deployed 
through the end of 2002. All these systems provide support for integrating sample 
(clinical) data based on proprietary data formats and allow regular incremen- 
tal updates of customer data; two of these systems provide support for custom 
Affymetrix GeneChip probe arrays; and one system also provides support for 
proprietary gene annotations. 
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CHAPTER 

Discove ryLi n k 

Laura M. Haas, Barbara A. Eckman, Prasad Kodali, 
Eileen T. Lin, Julia E. Rice, and Peter M. Schwarz 

DiscoveryLink enables the integration of diverse data from diverse sources into 
a single, virtual database, with the goal of making it easier for scientists to find 
the information they need to prevent and cure diseases. To progress in this quest, 
scientists need to answer questions that relate data about genomics, proteomics, 
chemical compounds, and assay results, which are found in relational databases, 
flat files, extensible markup language (XML), Web sites, document management 
systems, applications, and special-purpose systems. They need to search through 
large volumes of data and correlate information in complex ways. 

In bioinformatics research in the post-genomic era, the sheer volume of data 
and number of techniques available for use in the identification and characteri- 
zation of regions of functional interest in the genomic sequence is increasing too 
quickly to be managed by traditional methods. Investigators must deal with the 
enormous influx of genomic sequence data from human and other organisms. The 
results of analysis applications such as the Basic Local Alignment Search Tool 
(BLAST) [1], PROSITE [2], and GeneWise [3] must be integrated with a large va- 
riety of sequence annotations found in data sources such as GenBank [4], Swiss- 
Prot [5], and PubMed [6]. Public and private repositories of experimental results, 
such as the Jackson Laboratory's Gene Expression Database (GXD) [7], must also 
be integrated. Deriving the greatest advantage from this data requires full, query- 
based access to the most up-to-date information available, irrespective of where it 
is stored or its format, with the flexibility to customize queries easily to meet the 
needs of a variety of individual investigators and protein families. 

In an industrial setting, mergers and acquisitions increase the need for data 
integration in the life science industry in general and the pharmaceutical industry 
in particular. Even without mergers, in a typical pharmaceutical company, the 
research groups are geographically dispersed and divided into groups based on 
therapeutic areas. Scientists in each of these therapeutic areas might be involved 
in various stages of the drug discovery process such as target identification, target 
validation, lead identification, lead validation, and lead optimization. During each 
of these stages, they need to access diverse data sources, some specific to the 
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therapeutic area of interest and the particular stage of the process and others 
that are of value to many therapeutic areas and at many stages of the process. 
Providing the data integration infrastructure to support this research environment 
(geographically dispersed research groups accessing different sets of diverse data 
sources depending on their area of research and the stage of the drug discovery 
process) is a daunting task for any information technology (IT) group. 

As pharmaceutical companies try to shorten the drug-discovery cycle, they 
must identify new drug candidates more quickly by increasing the efficiency of the 
research processes and eliminating the false positives earlier in the discovery pro- 
cess. Providing scientists with easy access to the relevant information is essential. 
Researchers working in the gene expression domain may gain valuable insights 
if they have access to data from comparative genomics, biological pathways, or 
cheminformatics. This is also true for a scientist working in the lead identification 
or optimization areas. 

This case can be illustrated by an example. A research group in a pharma- 
ceutical company working in a particular therapeutic area might be interested in 
looking at all the compounds active in biological assays that have been generated 
and tested for a given receptor. In addition, the researchers might be interested in 
looking at similar compounds and their activities against similar receptors. This 
will help them understand the specificity and selectivity of the compounds iden- 
tified. The knowledge that a particular set of compounds was considered for a 
different therapeutic area by another team could help them develop new leads 
or eliminate compounds that are not specific in their activities. To answer these 
queries, the research group must correlate information from multiple databases, 
some relational (e.g., the assay data may be stored relationally), some not (the 
chemical structure data might be stored by a special-purpose system), and use spe- 
cialized functions of the data sources (e.g., similarity searches involving compound 
structures or DNA sequences). 

There are many different approaches to integrating diverse data sources. 
Often, integration is provided by applications that can talk to one of several data 
sources, depending on the user's request. In these systems, access to the data sources 
is typically "hard-wired." Replacing one data source with another means rewrit- 
ing a portion of the application. In addition, data from different sources cannot be 
compared in response to a single request unless the comparison is likewise wired 
into the application. Moving all relevant data to a warehouse allows greater flexi- 
bility in retrieving and comparing data, but at the cost of re-implementing or losing 
the specialized functions of the original source, as well as the cost of maintenance. 
A third approach is to create a homogeneous object layer to encapsulate diverse 
sources. This encapsulation makes applications easier to write and more extensi- 
ble, but it does not solve the problem of comparing data from multiple sources. 
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To return to the example, today this problem would be addressed by writing an 
application that accesses chemical structure databases (with specific functionality 
such as similarity or substructure searches), assay databases (maybe in relational 
format), and sequence databases (flat file, relational, or XML format). Answering 
the previous question requires multiple queries against these data sources: 

1. "Show me all the active compounds for each of the assays for a particular 
receptor." 

2. "Show me all the compounds that are similar to the top five compounds 
from the previous query" (may require multiple requests, one per compound, 
depending on the sophistication of the data store and application). 

3. "Do a BLAST [1] run to find similar receptors." 

4. "Show me the results of the compounds from Query 2 from all the assays 
against the receptors of Query 3" (may require multiple requests, one per 
compound or one per compound-receptor pair, depending on the sophistica- 
tion of the data store and application). 

5. "Sort the result set by order of the specificity or selectivity information" (if 
multiple queries were needed in Step 4). 

Depending on the activities of the set of compounds, various scenarios emerge that 
tell the researchers how best to continue their research. However, the application 
is hard to write and may need to be extended if additional sources are needed (e.g., 
if a new source of compound or assay information is acquired). 

A virtual database, on the other hand, offers users the ability to combine data 
from multiple sources in a single query without creating a physical warehouse. Dis- 
coveryLink [8] uses federated database technology to provide integrated access to 
data sources used in the life sciences industry. The federated middleware wraps the 
actual data sources, providing an extensible framework and encapsulating the de- 
tails of the sources and how they are accessed. In this way, DiscoveryLink provides 
users with a virtual database to which they can pose arbitrarily complex queries in 
the high-level, non-procedural query language SQL. DiscoveryLink focuses on ef- 
ficiently answering these queries, even though the necessary data may be scattered 
across several different sources, and those sources may not themselves possess all 
the functionality needed to answer such a query. In other words, DiscoveryLink is 
able to optimize queries and compensate for SQL functions that may be lacking in 
a data source. Additionally, queries can exploit the specialized functions of a data 
source, so no functionality is lost in accessing the source through DiscoveryLink. 

Using DiscoveryLink in the example, a single query could retrieve the struc- 
tures of compounds that are active in multiple assays against different receptors. 
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Views could be defined to create a canonical representation of the data. Further- 
more, the query would be optimized for efficient execution. DiscoveryLink's goal 
is to give the end user the perspective of a single data source, saving effort and 
frustration. In a real scenario, before researchers propose the synthesis and testing 
of an interesting compound they have found, they would like to know the tox- 
icity profile of the compound and related compounds and also the pathways in 
which the compound or related compounds might be involved. This would require 
gathering information from a (proprietary) toxicity database, as well as one with 
information on metabolic pathways, such as the Kyoto Encyclopedia of Genes 
and Genomes (KEGG), and using the structures and names of the compounds to 
look up the data--another series of potentially tricky queries without an engine 
such as DiscoveryLink. 

This chapter presents an overview of DiscoveryLink and shows how it can 
be used to integrate life sciences data from heterogeneous data sources. The next 
section provides an overview of the DiscoveryLink approach, discussing the data 
representation, query capability, architecture, and the integration of data sources, 
as well as providing a brief comparison to other systems for data integration. 
Section 11.2 focuses on query processing and optimization. Section 11.3 addresses 
performance, scalability, and ease of use. The final section concludes with some 
thoughts on the current status and success of the system, as well as some directions 
for future enhancements. 

11.1 APPROACH 

DiscoveryLink is based on federated database technology, which offers powerful 
facilities for combining information from multiple data sources. Built on tech- 
nology from an earlier product, DB2 DataJoiner [9], and enhanced with addi- 
tional features for extensibility and performance from the Garlic research project 
[10, 11], DiscoveryLink's federated database capabilities provide a single, vir- 
tual database to users. DB2 DataJoiner first introduced the concept of a virtual 
database, which is created by federating together multiple heterogeneous, rela- 
tional data sources. Users of DB2 DataJoiner could pose arbitrary queries over 
data stored anywhere in the federated system without worrying about the data's lo- 
cation, the SQL dialect of the actual data store(s), or the capabilities of those stores. 
Instead, users had the full capabilities of DB2 against any data in the federation. 
The Garlic project demonstrated the feasibility of extending this idea to build a 
federated database system that effectively exploits the query capabilities of diverse, 
often non-relational data sources. In both of these systems, as in DiscoveryLink, 
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a middleware query processor develops optimized execution plans and compen- 
sates for any functionality the data sources may lack. 

There are many advantages of a federated database approach to integrating 
life science data. In particular, this approach is characterized by transparency (the 
degree to which it hides all details of data location and management), heterogene- 
ity (the extent to which it tolerates data source diversity), a high degree of function 
providing the benefits of both SQL and the underlying data source capabilities, 
autonomy for the underlying federated sources, easy extensibility, openness, and 
optimized performance. All other approaches fall short in one or another of these 
categories. These other approaches are numerous, including domain-specific solu- 
tions, language-based frameworks, dictionary-based solutions, frameworks based 
on an object model, and data warehousing approaches. 

For example, companies like Informax provide data retrieval and data inte- 
gration for biological databases. Their system, and many like it, benefits from 
being created specifically for bioinformatics data, but as a result, it cannot readily 
exploit advances in query processing (e.g., in the relational database industry). 
Kleisli's [12] Collection Programming Language (CPL) presented in Chapter 6 
allows the expression of complicated transformations across heterogeneous data 
sources, but it provides no global schema, making query formulation and optimiza- 
tion difficult. The Sequence Retrieval System (SRS) [13, 14] presented in Chapter 
5 provides fast access to a vast number of text files, and LION provides a rich 
biology workbench of integrated tools built on SRS. SRS has its own proprietary 
query language, which offers excellent support for navigational access but less 
power for cross-source querying than SQL. In fact, LION's DiscoveryCenter uses 
DiscoveryLink to extend its database integration capabilities. Biomax provides 
similar functionality in its Biological Databanks Retrieval System (BioRS) tool, 
with cleanly structured interfaces based on the Common Object Request Broker 
Architecture (CORBA) for scalability on both multi-processors and workstations 
alike. BioRS also offers a curated and annotated database of the human genome 
and a number of powerful analysis tools. Again, while the domain-specific tooling 
makes this a great package for biologists, the language used for queries is more 
limited than SQL. Accelrys provides a relational data management and analysis 
package, SeqStore, and a rich set of bioinformatics tools for sequence analysis m 
the Genetics Computer Group (GCG) Wisconsin Package. SeqStore includes a 
relational data warehouse for sequence data, coupled with tools to receive auto- 
mated updates, to analyze sequences with the wide range of analyses available in 
the GCG Wisconsin Package, and to create automated sequence analysis pipelines. 
The warehousing approach requires that data be moved (or copied), interfering 
with source autonomy and limiting the extensibility of the systemmor at least 
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making it harder to extend. The object frameworks, such as that provided by 
Tripos, provide only limited transparency. Similar arguments apply to most other 
bioinformatics integration engines. 

The two biology-focused integration engines that come closest to Discov- 
eryLink's vision are Gene Logic's Object Protocol Model (OPM) [15] and the 
Transparent Access to Multiple Biological Information Systems (TAMBIS) [16], 
presented in Chapter 7. OPM provides a virtual, object-oriented database, with 
queries in the proprietary OPM-MQL query language over diverse query sources. 
OPM's query optimization is rule-based and somewhat limited, because of the dif- 
ficulties of optimizing over its more complex data model. While an object-oriented 
model is a natural choice for modeling life sciences data, and OPM's class methods 
have been demonstrated to add significant scientific value [17], DiscoveryLink fol- 
lows an industry standard (relational), believing that the virtues of openness and 
the benefits of riding on technology that is constantly evolving and growing in 
power (due to the large number of users and uses) outweighed the annoyances of 
modeling data as relations. In fact, the database industry is now rapidly adding sup- 
port for XML and XQuery to its once purely relational products; DiscoveryLink 
will exploit these capabilities as they become available, alleviating any model- 
ing issues substantially. For example, the DiscoveryLink engine already supports 
SQL/XML functions that allow it to return XML documents instead of tuples. 

TAMBIS is unique in its use of an ontology to guide query formulation, query 
processing, and data integration. It also offers users a virtual database and deals 
with a great deal of heterogeneity. Originally based on CPL wrappers for accessing 
data sources, TAMBIS now uses a more general Java wrapper mechanism. TAMBIS 
focuses on supporting direct user interactions, unlike DiscoveryLink, which is 
meant to be a general infrastructure against which many different query tools can 
be used. Again, DiscoveryLink benefits from its open, industry-standard interfaces 
for both queries and wrappers. However, the use of an ontology to generate and 
refine queries is a powerful mechanism, and the marriage of such techniques to 
DiscoveryLink middleware could be explored to provide a more biology-centric 
experience for users. 

Because DiscoveryLink is a general platform for data integration, it also can 
be compared to other database integration offerings. Most of the major database 
vendors offer some sort of cross-database query product, often called a gateway. 
For example, Oracle offers both dblinks (for cross-Oracle queries) and Oracle 
Transparent Gateway (for more heterogeneous data sources). DiscoveryLink dif- 
fers from these and other products in three fundamental ways: (1) It offers an open 
application programming interface (API) for wrapper construction; (2) it allows 
the use of data source functions in queries that span multiple data sources; and (3) 
it has the most powerful optimization capabilities available (it is the only system 
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11.1 

FIGURE 

11.1.1 

DiscoveryLink architecture. 

that takes query-specific input from wrappers during query planning). Few sys- 
tems offer the same degree of transparency and the same query processing power 
against heterogeneous sources. 

Architecture 
The overall architecture of DiscoveryLink, shown in Figure 11.1, is common to 
many heterogeneous database systems, including the Stanford-IBM Manager of 
Multiple Information Sources (TSIMMIS) [18], Distributed Information Search 
Component (DISCO) [19], Pegasus [20], Distributed Interoperable Object Model 
(DIOM) [21], Heterogeneous Reasoning and Mediator System (HERMES) [22], 
and Garlic [10, 11]. Applications connect to the DiscoveryLink server using any 
of a variety of standard database client interfaces, such as Call Level Interface 
(CLI) [23], Object Database Connectivity (ODBC), or Java Database Connectiv- 
ity (JDBC), and submit queries to DiscoveryLink in standard SQL (specifically 
SQL3 [24]). The information required to answer the query comes from the local 
database and/or from one or more data sources, which have been identified to 
DiscoveryLink through a process called registration. The data from the sources 
is modeled as relational tables in DiscoveryLink. The user sees a single, virtual 
relational database, with the original locations and formats of the sources hidden. 
The full power of SQL is supported against all the data in this virtual database, 
regardless of where the data is actually stored and whether the data source actually 
supports the SQL operations. 

When an application submits a query to the DiscoveryLink server, the server 
identifies the relevant data sources and develops a query execution plan for 
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obtaining the requested data. The plan typically breaks the original query into 
fragments that represent work to be delegated to individual data sources and ad- 
ditional processing to be performed by the DiscoveryLink server to filter, aggregate, 
or merge the data. The ability of the DiscoveryLink server to further process data 
received from sources allows applications to take advantage of the full power of 
the SQL language, even if some of the information they request comes from data 
sources with little or no native query processing capability, such as simple text 
files. The local data store allows query results to be stored for further processing 
and refinement, if desired, and also provides temporary storage for partial results 
during query processing. 

The DiscoveryLink server communicates with a data source by means of a 
wrapper [11], a software module tailored to a particular family of data sources. 
The wrapper for a data source is responsible for four tasks: 

�9 Mapping the information stored by the data source into DiscoveryLink's re- 
lational data model 

�9 Informing DiscoveryLink about the data source's query processing capabilities 
by analyzing plan fragments during query optimization 

�9 Mapping the query fragments submitted to the wrapper into requests that can 
be processed using the native query language or programming interface of the 
data source 

�9 Executing such requests and returning results 

The interface between the DiscoveryLink server and the wrapper supports the 
International Standards Organization/Structured Query Language/Management 
of External Data (ISO SQL/MED) standard [25]. 

Wrappers are the key to extensibility in DiscoveryLink, so one of the pri- 
mary goals for the wrapper architecture was to allow wrappers for the widest 
possible variety of data sources to be produced with a minimum of effort. Past 
experience has shown that this is feasible. To make the range of data sources that 
can be integrated using DiscoveryLink as broad as possible, a data (or applica- 
tion) source only needs to have some form of programmatic interface that can 
respond to queries and, at a minimum, return unfiltered data that can be modeled 
(by the wrapper) as rows of (one or more) tables. The author of a wrapper need 
not implement a standard query interface that may be too high-level or low-level 
for the underlying data source. Instead, a wrapper provides information about a 
data source's query processing capabilities and specialized search facilities to the 
DiscoveryLink server, which dynamically determines how much of a given query 



the data source is capable of handling. This approach allows wrappers for simple 
data sources to be built quickly, while retaining the ability to exploit the unique 
query processing capabilities of non-traditional data sources such as search engines 
for chemical structures or images. For DiscoveryLink, this design was validated 
by wrapping a diverse set of data sources including flat files, relational databases, 
Web sites, a specialized search engine for text, and the BLAST search engine. 

To make wrapper authoring as simple as possible, only a small set of key 
services from a wrapper is required, and the approach ensures that a wrapper 
can be written with very little knowledge of DiscoveryLink's internal structure. 
As a result, the cost of writing a basic wrapper is small. In past experience, a 
wrapper that just makes the data at a new source available to DiscoveryLink, 
without attempting to exploit much of the data source's native query process- 
ing capability, can be prototyped in a matter of days by someone familiar with 
the data source interfaces and the wrapper concepts. Because the DiscoveryLink 
server can compensate for missing functionality at the data sources, even such a 
simple wrapper allows applications to apply the full power of SQL to retrieve 
the new data and integrate it with information from other sources, albeit with 
perhaps less-than-optimal performance. Once a basic wrapper is written, it can 
be incrementally improved to exploit more of the data source's query processing 
capability, leading to better performance and increased functionality as specialized 
search algorithms or other novel query processing facilities of the data source are 
exposed. 

A DiscoveryLink wrapper is a C++ program, packaged as a shared library 
that can be loaded dynamically by the DiscoveryLink server when needed. Often 
a single wrapper is capable of accessing several data sources, as long as they 
share a common or similar API. For one thing, wrappers do not need to encode 
information on the schema of data in the source. For example, the Oracle wrap- 
per provided with DiscoveryLink can be used to access any number of Oracle 
databases, each having a different schema. In fact, the same wrapper supports 
several Oracle release levels as well. This has a side benefit, namely that schemas 
can evolve without requiring any change in the wrapper as long as the source's 
API remains unchanged. In addition, wrappers can get connection information for 
individual servers from SQL Data Definition Language (DDL) statements, even if 
the schemas are identical. On the other hand, there is a tradeoff between flexibility 
and ease of configuration (the more flexible the wrapper, the more it needs to be 
told during registration). For that reason, it is sometimes more practical to encode 
(parts of) the schema in the wrapper. For example, the BLAST wrapper defines 
many fixed columns, but allows the user to specify others that are appropriate for 
their instantiation of BLAST. 
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This architecture has many benefits, as described previously. However, there 
are some controversial aspects. First and foremost, much biology data is semi- 
structured, and the current implementation forces data to be modeled relationally. 
While this does complicate wrapper writing somewhat, there are several examples 
of wrappers today that deal with nested and semi-structured data, including an 
XML wrapper. These wrappers expose their data as multiple relations, which can 
be joined to get back the full structure (note that the data is still stored in its nested 
form, and the joins are often translated into simple retrievals as a result). Future 
direction is to support XML and XQuery natively in DiscoveryLink's engine and 
to allow wrapper writers their choice of a relational or an XML model. That will 
make the modeling issues less painful. 

A second issue is the use of C++, a general purpose and somewhat arcane 
programming language, for writing wrappers, as opposed to a simpler scripting 
language or a specialized wrapper construction mechanism. A general-purpose 
language was chosen for several reasons. First, DiscoveryLink is meant to handle 
large-scale queries over many data sources and large volumes of data. C++ is an 
efficient language, suitable for such applications. Second, DiscoveryLink wrappers 
are required to do more than ordinary connectors or adaptors, and the general- 
purpose programming language allows the wrapper writer complete flexibility in 
accomplishing the wrapper tasks. A toolkit and tools for wrapper development 
can ease the pain of programming by providing template functions, automatic 
generation of parts of the code, error checking, and so on. Last but not least, the 
DiscoveryLink engine happens to be written in C++, so this was by far the easiest 
to interface with the engine initially. A Java version of the toolkit is currently 
produced, as well as a set of generic wrappers for particular styles of data source 
access (e.g., a Web services wrapper, ODBC and JDBC wrappers, maybe even 
a Perl script wrapper). These facilities should increase the ease of adding new 
wrappers. 

Related to the ease of wrapper writing is the ease of changing wrappers when 
(if) the interface to the data source changes. For most data sources, such changes 
are uncommon (note that this is not in reference to schema changes but to changes 
in the API or language used by the data source). When changes do occur, they 
are often additions to the existing interface, and the wrapper can continue to 
function as-is, only needing modification if exploiting the new feature(s) is desired. 
Most commercial data sources, for example, try to maintain upward compatibility 
in interface between one release and the next. But for some classes of sources 
(especially Web data sources), change is much more common. To deal with these 
sources, it is particularly desirable to have some non-programmatic or scripted 
way of creating wrappers. Our explorations into generic wrappers that can be 
easily tailored will address this concern. 
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11.1.2 Registration 
The process of using a wrapper to access a data source begins with registration, the 
means by which a wrapper is defined to DiscoveryLink and configured to provide 
access to selected collections of data managed by a particular data source. Regis- 
tration consists of several steps, each taking the form of a DDL statement. Each 
registration statement stores configuration meta-data in system catalogs main- 
tained by the DiscoveryLink server. 

The first step in registration is to define the wrapper itself and identify the 
shared library that must be loaded before the wrapper can be used. The CREATE 
WRAPPER statement serves this purpose. BLAST [1] is a search engine for finding 
nucleotide or peptide sequences similar to a given pattern sequence. A wrapper 
for BLAST might be created as follows: 

CREATE WRAPPER BlastWrapper LIBRARY ' libblast.a' 

Note that a particular data source has not yet been identified, only the software 
required to access any data source of this kind. The next step of the registration 
process is to define specific data sources using the CREATE SERVER statement. 
If several sources of the same type are to be used, only one CREATE WRAPPER 
statement is needed, but a separate CREATE SERVER would be needed for each 
source. For a particular BLAST service, the statement might be as follows: 

CREATE SERVER TBlastNServ TYPE ' tBLASTn' VERSION ' 2.1.2 ' 

WRAPPER BlastWrapper 

OPTIONS (NODE 'myblast.bigpharma.com' , PORT '2003') 

This statement registers a data source that will be known to DiscoveryLink as 
T B l a s t N S e r v  and indicates that it is to be accessed using the previously reg- 
istered wrapper, B l a s t W r a p p e r .  It further identifies that this BLAST server is 
doing a tBLASTn search (i.e., comparing an amino acid sequence, the input, to a 
database of nucleotide sequences) and that it is using version 2.1.2 of the BLAST 
software. The additional information specified in the OPTIONS clause is a set of 
pairs (option name, option value) that are stored in the DiscoveryLink catalogs 
but are meaningful only to the relevant wrapper. In this case, they indicate to the 
wrapper that the T B l a s t N S e r v  data source can be contacted via a particular 
Internet Protocol (IP) address and port number. In general, the set of valid option 
names and option values will vary from wrapper to wrapper because different 
data sources require different configuration information. Options can be specified 
on each of the registration DDL statements and provide a simple but power- 
ful form of extensible meta-data. Because a wrapper understands the options it 
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defines, only that wrapper can validate that the option names and values spec- 
ified on a registration statement are meaningful and mutually compatible. As 
a result, wrappers participate in each step of the registration process and may 
reject, alter, or augment the option information provided in the registration DDL 
statement. 

The third registration step is to identify, for each data source, particular col- 
lections of data that will be exposed to DiscoveryLink applications as tables. This 
is done using the CREATE NICKNAME statement. Collectively, these statements 
define the schema of each data source and form the basis of the integrated schema 
seen by applications. 

For example, suppose there are three data sources. One is a relational database 
system providing data on protein targets. The second is a Web site storing informa- 
tion about technical publications. The third is a BLAST server that has the ability 
to compare an input sequence to a file of stored sequences as described previously. 
For this example, three sets of CREATE NICKNAME statements are needed, one 
set for each of the three data sources. Figure 11.2 shows representative CREATE 
NICKNAME statements that define partial schemas for each source. 

The protein sequence source exports two relations. The first is P r o t e i n s ,  
with columns representing the unique identifier for a protein, the common (print) 
name, the amino acid sequence associated with the protein, the function of the 
protein, and a list of diseases with which the protein has been associated. In real 

11.2 

FIGURE 

Protein Sequence Source 
Schema (Relational Database) 

CREATE NICKNAME Proteins 
(protein_id varchar(30)not null, 

name varchar(60), 
sequence varchar(32000), 
function varchar(100), 
diseases varchar(256)) 

FOR proteindb.bio.swpdata 

CREATE NICKNAME Prot-Pubs 
(prot_id varchar(30) not null, 
pub ref varchar(10) not null) 

FOR proteindb.bio.swppubs 

Publications Source Schema 
(Web Site) 

CREATE NICKNAME Pubs 
(pub_id varchar(10) not null, 
pub_title varchar(30)not null, 
pub_date date, 
keywords varchar(256)) 

FOR SERVER pubdb 
OPTIONS( 

URL 'http://www.pubsite.org') 

CREATE FUNCTION 
MAPPING FOR 
contains (varchar ( i0 ) , 

varchar ( 30 ) , 
varchar (256)) 

RETURNS char (I) 
FOR SERVER pubdb 

BLAST Source Schema 
(Search Engine) 

CREATE NICKNAME 
Protein blast _ 
(query_seq varchar (32000) , 
accession varchar (I0) 
options (index 'i' , delimit ' '), 

definition varchar (I00) 
options (index ' 2' ) , 
hsp_info varchar (i00) 

) 
FOR SERVER TBlastNServ 
OPTIONS (datasource 'gbest' ) 

Representative configuration statements (syntax simplified for illustration). 
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life, a Database Administrator (DBA) would likely declare a fuller set of columns, 
representing more of the information contained in the source; the schema is sim- 
plified in the interest of space only. Also, because the data source--a relational 
Database Management System (DBMS)--has a self-describing schema, the DBA 
would not actually need to put the column information in the CREATE NICK- 

NAME statement. That information could be read from the data source catalogs 
automatically. The second relation exported from this source is a mapping table 
that maps proteins to publications that reference them. The FOR clause identi- 
fies, via a three-part name, the server, schema, and remote table referenced by the 
nickname. This syntax may be used with relational data sources. 

Similarly, the DBA makes visible a single table, Pubs, from the publication 
source, for which only four columns are shown: the publication identifier, the title 
of the article, the date the article was published, and a list of keywords for the 
publication. Note that the nickname definitions give the types of attributes in 
terms of standard SQL data types. This represents a commitment on the part of 
the wrapper to translate types used by the data source to these types as necessary. 

Finally, the BLAST search engine is modeled as a virtual table, indexed on 
the input sequence and with columns representing both input parameters and 
the results of the BLAST search. Again, only a subset of the schema is shown. 
Here are shown the input column, q u e r y _ s e q ,  and output columns for the 
accession number, definition, and h s p _ i n f o  (the information string computed 
for a given high-scoring segment pair containing information about the number 
of nucleotides or amino acids that matched between the query and the hit se- 
quences). Note the use of options clauses on both the CREATE NICKNAME state- 
ment and on the definition of individual columns. These give the DBA the ability 
to specify information needed by the wrapper. For the BLAST wrapper, the op- 
tions on the individual columns tell the wrapper how to parse the BLAST defline 
into these columns. In this case, the defline is assumed to contain the accession 
number, followed by the definition, delimited by white space. (Columns whose 
values do not come from the defline have no parsing options specified.) The op- 
tion on the overall CREATE NICKNAME tells the wrapper which data source to 
blast against (in this case GenBank's gbest). Actually, the BLAST wrapper sup- 
ports so many different input and output columns that part of the schema is 
hard-wired so a DBA does not have to re-type all the columns in the CREATE 

NICKNAME statement. Further details on this wrapper can be found in the IBM 
DB2 Life Sciences Data Connect Planning, Installation and Configuration Guide 
[26]. 

Specialized search or data manipulation capabilities of a data source also can 
be modeled as user-defined functions, and identifying these functions by means 
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of CREATE FUNCTION MAPPING statements is the fourth step in registration. 
Thus, the definition of the publications data source in Figure 11.2 also includes 
a CREATE FUNCTION MAPPING statement, registering that source's function 
c o n t a i n s  (A, B, C). This function returns 'Y' if the publication identified 
by A contains the string c in column B, for example, c o n t a i n s  ( ' M L 5 4 6 '  , 

' k e y w o r d s ' ,  ' o v a r i a n  c y s t '  ). The mapping identifies this function to the 
query processor and declares its signature and return type in terms of standard 
SQL data types. As with nicknames, the wrapper must convert values of these 
types to and from the corresponding types used by the data source. This function 
models the underlying data source's Boolean search capability. 

Finally, user mappings are defined. A user mapping tells DiscoveryLink how 
to connect a particular local user to a data source. For example, if a DiscoveryLink 
user identified by LAURA connects to the protein database as ITNerd,  using the 
password DLRocks, the following DDL statement might be issued: 

CREATE USER MAPPING FOR LAURA SERVER proteindb 

OPTIONS (REMOTE_AUTHID' ITNerd' , REMOTE_PASSWORD' DLRocks ' ) 

With these five steps, registration is complete. The new data source is ready to use. 
Queries can combine data from all the registered sources and use the specialized 
capabilities of these sources; in the example, two techniques for modeling these 
special capabilities were shown: using a virtual table, as done for the BLAST 
source, and using a function mapping, as done for the contains function of the 
publications source. Note that additional sources can be added at any time without 
affecting the ongoing operations of the federated system. The system need not be 
quiesced, and existing applications and queries need not be altered. However, new 
queries that combine information from the preexisting sources and the new source 
can now be asked. 

If data source schemas or functions change, they must be re-registered. Dis- 
coveryLink currently has no mechanism to detect changes in the sources, though 
an application that periodically compares the DiscoveryLink and source schemas 
could be written. 

11.2 QUERY PROCESSING OVERVIEW 

Once registration is completed, the newly defined nicknames and functions can be 
used in queries. When an application issues a query, the DiscoveryLink server uses 
the meta-data in the catalogs to determine which data sources hold the requested 
information. Then it optimizes the query, looking for an efficient execution plan. 
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It explores the space of possible query plans, using dynamic programming to 
enumerate plans for joins. The optimizer first generates plans for single table 
accesses, then for two-way joins, and so on. With each round of planning, the 
optimizer considers various join orders and join methods, and if all the tables are 
located at a common data source, it tries to generate plans for performing the join 
either at the data source or at the federated server. 

Once the optimizer has chosen a plan for a query, query fragments are dis- 
tributed to the data sources for execution. Each wrapper maps the query fragment 
it receives into a sequence of operations that make use of its data source's native 
programming interface and/or query language. Once the plan has been translated, 
it can be executed immediately or saved for later execution. The DiscoveryLink 
server's execution engine is pipelined and employs a fixed set of functions (open, 
fetch, close) that each wrapper must implement to control the execution of a 
query fragment. When accepting parameters from the server or returning results, 
the wrapper is responsible for converting values from the data source type system 
to DiscoveryLink's SQL-based type system. 

DiscoveryLink includes a full database engine that can execute arbitrary (DB2) 
SQL queries. Features useful for life sciences applications include support for long 
data types (e.g., Binary Large Object [BLOB], Character Large Object [CLOB]) 
and user-defined functions. Applications also benefit from the ability to update 
information at relational data sources via SQL statements submitted to Discov- 
eryLink (and in the future, full transaction management for data sources that 
comply with the X/Open XA-interface specification), the ability to invoke stored 
procedures that reference nicknames, and the ability to use DiscoveryLink DDL 
statements to create new data collections at relational data sources. Another fea- 
ture allows certain queries to be answered using pre-materialized automatic sum- 
mary tables stored by DiscoveryLink, with little or no access to the data sources 
themselves. Joins, subqueries, table expressions, aggregation, statistical functions, 
and many other SQL constructs are supported against data, whether the data is 
locally stored or retrieved from remote data sources. 

Query Optimization 
During the planning process, the DiscoveryLink server takes into account the 
query processing power of each data source. As it identifies query fragments to be 
performed at a data source, it must ensure that the fragments are executable by 
that source. If a fragment cannot be performed by the source, the optimizer builds 
a plan to compensate for the missing function by doing that piece of work in the 
DiscoveryLink server. For example, if the data source does not do joins, but it is 
necessary to join together data from two nicknames at that source, the data will 
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be retrieved from both nicknames (typically after restricting it with any predicates 
the source can apply), and then joined by DiscoveryLink. 

The DiscoveryLink server has two ways of obtaining information about query 
processing power. Wrappers provided by IBM for relational data sources (and for 
other sources that are similar to a relational source in function) provide a server 

attributes table (SAT). The SAT contains a long list of parameters that are set to 
appropriate values by the wrapper. For example, if the parameter PUSHDOWN is 
set to "m", DiscoveryLink will not request that the data source perform query 
fragments more complex than: 

SELECT <column_list> FROM <nickname> 

Note: In this chapter, SQL is used as a concise way of expressing the work to 
be done by a remote data source. This work is actually represented internally by 
various data structures for efficient data processing. 

If PUSHDOWN is set to 'Y ' ,  more complex requests may be generated, de- 
pending on the nature of the query and the values of other SAT parameters. For 
example, if the value of the BASIC_PRED parameter in the SAT is 'Y ' ,  requests 
may include predicates such as: 

�9 ..WHERE pub_date > '12/31/1995' 

The parameter MAX_TABS is used to indicate a data source's ability to perform 
joins. If it is set to 1, no joins are supported. Otherwise MAX_TABS indicates the 
maximum number of nicknames that can appear in a single FROM clause of the 
query fragment to be sent to the data source. 

Information about the cost of query processing by a data source is supplied to 
the DiscoveryLink optimizer in a similar way, using a fixed set of parameters such 
as CPU_RATIO, which is the relative speed of the data source's processor relative to 
the one hosting the DiscoveryLink server. Additional parameters, such as average 
number of instructions per invocation and average number of Input/Output (I/O) 
operations per invocation, can be provided for data source functions defined to 
DiscoveryLink with function mappings, as can statistics about tables defined as 
nicknames. Once defined, these parameters and statistics can be easily updated 
whenever necessary. 

This approach has proven satisfactory for describing the query processing ca- 
pabilities and costs of the relational database engines supported by DiscoveryLink; 
although even for these superficially similar sources, a large set (hundreds) of pa- 
rameters is needed. However, it is difficult to extend this approach to more id- 
iosyncratic data sources. Web servers, for example, may be able to supply many 
pieces of information about some entity, but frequently they will only allow certain 
attributes to be used as search criteria. This sort of restriction is difficult to express 
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using a fixed set of parameters. Similarly, the cost of executing a query fragment 
at a data source may not be easily expressed in terms of fixed parameters, if, for 
example, the cost depends on the value of an argument to a function. For instance, 
a BLAST function asked to do a BLASTp comparison against a moderate amount 
of data will return in seconds, whereas if it is asked to do a tBLASTn comparison 
against a large dataset, it may need hours. 

The solution, validated in the Garlic prototype, is to involve the wrappers 
directly in planning of individual queries. Instead of attempting to model the 
behavior of a data source using a fixed set of parameters with statically determined 
values, the DiscoveryLink server will generate requests for the wrapper to process 
specific query fragments. In return, the wrapper will produce one or more wrapper 
plans, each describing a specific portion of the fragment that can be processed, 
along with an estimate for the cost of computing the result and its estimated size. 

An Example 
Voltage-sensitive calcium channel proteins mediate the entry of calcium ions into 
cells and are involved in such processes as neurotransmitter release. They respond 
to electric changes, which are a prominent feature of the neural system. The dis- 
covery of a novel gene that codes for a calcium channel protein would potentially 
be of great interest to pharmaceutical researchers seeking new drug targets for 
a neuropsychological disease. A popular method of novel gene discovery is to 
search Expressed Sequence Tag (EST) databases for (expressed) sequences similar 
to known genes or proteins. For example, a scientist with access to the data sources 
just described might like to see the results of the following query: 

"Return accession numbers and definitions of EST sequences that are similar 
(60% identical over 50 amino acids) to calcium channel sequences in the protein 
data source that reference papers published since 1995 mentioning "brain'." 

The hsp_info column holds a condensed form of the equivalent data in the 
XML specification for BLAST provided by the National Center for Biotechnology 
Information. But to answer the above query, one needs direct access to the per- 
centage of identities within the hsp alignment and the length of that alignment. 
Assume that two user-defined functions are defined to extract this information 
from the h s p _ i n f o  string: 

CREATE FUNCTION percent_identity(varchar (i00)) 

RETURNS float EXTERNAL NAME 'hsp_info. a' 

and 

CREATE FUNCTION align_length (varchar (i00)) 

RETURNS integer EXTERNAL NAME ' hsp_info, a' 
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Then, this request can be expressed as a single SQL statement that combines data 
from all three data sources: 

SELECT b.name, c.accession, c.definition, a.pub_id 

FROM Pubs a, Proteins b, Protein_blast c, Prot-Pubs d 

WHERE a.pub_id = d.pub_ref 

AND d.prot_id = b.protein_id 

AND b.sequence = c.Query_seq 

AND b.function = 'calcium channel' 

AND a.pub_date > '12/31/1995' 

AND contains(a.pub_id, 'Keyword', 'brain') = 'Y' 

AND percent_identity(c.hsp_info) >0.6 

AND align_length(c.hsp_info) > 50 

Many possible evaluation plans exist for this query. One plan is shown in Figure 
11.3. In this figure, each box represents an operator. The leaves represent actions at 
a data source. Because DiscoveryLink does not model the details of those actions, 

11.3 

FIGURE 

One evaluation plan for the query. 
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each action is modeled as a single operator, even if it might involve a series of 
operators at the source. (For relational sources, DiscoveryLink does in fact model 
the individual operators, but to simplify the figures, details are omitted. Thus the 
join of p r o t e i n s  and p r o t - p u b s  is modeled in the figures as a single operator.) 
For non-relational sources, DiscoveryLink would not know whether a logical join 
action was an actual join or whether, in fact, the data was stored in a nested, pre- 
joined format. Nor does DiscoveryLink know whether the data are scanned and 
then predicates applied, or there is an indexed access, and so on. Instead, Discov- 
eryLink keeps track of the work that has been done by recording the properties of 
each operator. The properties include the set of columns available (c), the set of 
tables accessed (T), and the set of predicates applied (p), as shown in Figure 11.3. 
Non-leaf nodes represent individual operations at the DiscoveryLink server. The 
optimizer models these local operations separately. 

This plan first accesses the protein data source, retrieving protein names and 
sequences and corresponding publication identifiers, for all proteins that serve 
as calcium channels. This information is returned to DiscoveryLink, where the 
bindjoin operator sends the publication references to the publications source one 
at a time. At the publications source, these publication identifiers are used to find 
relevant publications, and those publications are further checked for compliance 
with the query restrictions on k ey word  and p u b _ d a t e .  For those publications 
that pass all the tests, the identifier is returned to DiscoveryLink. There, the second 
bindjoin operator sends the sequence for any surviving proteins to BLAST, where 
they are compared against gbest, and the results are returned to DiscoveryLink 
where each hsp_info is analyzed to see if the sequence is sufficiently similar. 

A second, superficially similar plan is shown in Figure 11.4. In this plan, 
the publications with appropriate dates and keywords are sent to DiscoveryLink, 
where a hash table is built. The data from the protein data source are also sent 
to DiscoveryLink and used to probe the hash table. Matches are passed to the 
bindjoin operator, which BLASTs the sequences against gbest, then returns them 
to DiscoveryLink to check the quality of the match. 

It is not obvious which plan is best. The first plan results in one query of 
the protein database, but many queries (one for each qualified protein) of the 
publications database. The second plan only queries each of these sources once, 
but potentially returns many publication entries for proteins that will not qualify. 

Either of these plans is likely to be better than the one shown in Figure 11.5. 
In this plan, the protein data is extracted first and all calcium channel proteins are 
BLASTed against gbest, regardless of what publications they reference. Discov- 
eryLink then filters the sequences using the similarity criterion, and the remaining 
proteins are passed to the nested loop join operator. This join compares each 
protein's referenced publications with a temporary table created by storing in 
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11.4 

FIGURE 

11.2.3 

A second query evaluation plan. 

DiscoveryLink those recent publications that discuss the brain. This plan could 
only win if there were very few recent publications with brain as a keyword (so 
the cost of the query to make the temporary table is small), and yet virtually every 
calcium channel protein in the protein database referenced at least one of them (so 
there is no benefit to doing the join of proteins with publications early). While that 
is unlikely for this example, if there were a more restrictive set of predicates (e.g., 
a recently discovered protein of interest and papers within the last two months), 
this plan could, in fact, be a sensible one. 

Determining Costs 
Accurately determining the cost of the various possible plans for this or any query 
is difficult for several reasons. One challenge is estimating the cost of evaluat- 
ing the wrapper actions. For example, the DiscoveryLink engine has no notion 
of what must actually be done to find similar sequences or how the costs will 
vary depending on the input parameters (the bound columns). For BLAST, the 
actual algorithm used can change the costs dramatically, as can the data set 
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11.5 

FIGURE 

A third plan for the query. 

being searched. As a second challenge, the query processor has no way to esti- 
mate the number of results that may be returned by the data sources. While the 
wrapper could, perhaps, provide some statistics to DiscoveryLink, purely rela- 
tional statistics may not be sufficient. For example, cardinalities, as well as costs, 
for search engines like BLAST may vary depending on the inputs. A third chal- 
lenge is to estimate the cost of the functions in the query. The costing parameters 
maintained by relational wrappers in DiscoveryLink for a function implemented 
by a data source include a cost for the initial invocation and a per-row cost for 
each additional invocation. However, the only way to take the value of a func- 
tion argument into account is through a cost adjustment based on the size of the 
argument value in bytes. While this may be acceptable for simple functions like 
percent_identity and align_length, it is unlikely, in general, to give ac- 
curate results. For example, if contains actually has to search in different ways 
depending on the type of the column passed as an argument (e.g., a simple scan 
for keyword but an index lookup for the paper itself), the cost parameters must 
be set to reflect some amalgamation of all the. search techniques. A simple case 
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statement, easily written by the wrapper provider, could model the differences 
and allow more sensible choices of plans. While the costs of powerful functions 
in some cases can be hard to predict, many vendors do, in fact, know quite a bit 
about the costs of their functions. They often model costs themselves to improve 
their systems' performance. 

The challenges of accurately estimating costs are met by letting the wrap- 
per examine possible plan fragments to provide information about what the data 
source can do and how much it will cost. Consider our example query once again. 
During the first phase of optimization, when single-table access plans are being 
considered, the publications database will receive the following fragment for con- 
sideration (again, query fragments are represented in SQL; the actual wrapper 
interface uses an equivalent data structure that does not require parsing by the 
wrapper). 

SELECT a. pub_id, a. pub_date 

FROM Pubs a 

WHERE a.pub_date > '12/31/1995' 

AND contains (a.pub_id, ' keyword' , 'brain') = 'Y' 

Assume that, in a single operation, the publications database can apply either the 
predicate on publication date or the c o n t a i n s  predicate, but not both. Many Web 
sites can handle only a single predicate at a time or only restricted combinations. 
(Note: In the previous illustrative plans, it was assumed that the publications 
database could do both. Either assumption might be true. This one is adopted here 
to illustrate the point.) Further assume that it is possible to invoke the contains 
function separately later (this is like asking a new, very restrictive query of the 
Web site). Many Web sites do allow such follow-on queries to retrieve additional 
information about an object or do some more complex computation. The wrapper 
might return two wrapper plans for this fragment. The first would indicate that 
the data source could perform the following portion of the fragment: 

SELECT a. pub_id, a. pub_date 

FROM pubs a 

WHERE a.pub_date > '12/31/1995' 

with an estimated execution cost of 3.2 seconds and an estimated result size of 
500 publications (in reality, of course, the result size would be much bigger). 
To estimate the total cost of the query fragment using this wrapper plan, the 
DiscoveryLink optimizer would add to the cost for the wrapper plan the cost of 
invoking the contains function on each of the 500 publications returned. If each 
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invocation costs a second (because of the high overhead of going out to the World 
Wide Web), the total cost of this portion of the query, using this plan, would be 
503.2 seconds. 

The second wrapper plan would indicate that the data source could perform 
the following portion of the fragment: 

SELECT a. pub_id, a. pub_date 

FROM Pubs a 

WHERE contains (a.pub_id, ' keyword' , 'brain') - 'Y' 

with an estimated execution cost of 18 seconds and an estimated result size of 1000 
publications (i.e., entries for all the publications in the database with the keyword 
brain). To compute the total cost in this case, the optimizer would augment the 
cost for the wrapper plan with the cost of using the DiscoveryLink engine to apply 
the predicate on publication date to each of the 1000 publications. If filtering one 
publication takes a 1/100 of a second, the total cost for this portion of the query, 
using this plan, would be 28 seconds--a clear winner. 

Wrappers participate in query planning in the same way during the join enu- 
meration portion of optimization. In the example, the wrapper might be asked to 
consider the following query fragment: 

SELECT a. pub_id, a. pub_date 

FROM Pubs a 

WHERE a.pub date > '12/31/1995' 

AND contains (a.pub_id, ' keyword' , 

AND a.pub_id = -H0 

'brain') = 'Y' 

This is essentially a single-table access, but the third predicate would not be con- 
sidered during single-table access planning because the value being compared to 
p u b _ i d  comes from a different table. For each p u b _ i d  produced by the rest of 
the query (represented above by the host variable :H0), the publications database 
is asked to find the important properties of the corresponding publication, if it 
matches the other criteria. As before, the wrapper would return one or more plans 
and indicate in each one which of the predicates would be evaluated. 

Only a few of the plans that DiscoveryLink would consider in optimizing 
this query were shown. The goal was not to give an exhaustive list of alterna- 
tives, but rather to illustrate the process. As well, the chapter has demonstrated 
the critical role an optimizer plays for complex queries. It is neither obvious nor 
intuitive which plan will ultimately be the best; the answer depends on many fac- 
tors including data volumes, data distributions, the speeds of different processors 
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and network connections, and so on. Simple heuristics generally cannot arrive at 
the right answer. Only a cost-based process with input on specific data source 
characteristics can hope to choose the right plans for the vast array of possible 
queries. 

As a wrapper may be asked to consider many query fragments during the 
planning of a single query, it is important that communication with the wrapper 
be efficient. This is achieved easily in DiscoveryLink because the shared library that 
contains a wrapper's query planning code is loaded on demand into the address 
space of the DiscoveryLink server process handling the query. The overhead for 
communicating with a wrapper is, therefore, merely the cost of a local procedure 
call. 

This approach to query planning has many benefits. It is both simple and 
extremely flexible. Instead of using an ever-expanding set of parameters to invest 
the DiscoveryLink server with detailed knowledge of each data source's capabil- 
ities, this knowledge resides where it falls more naturally, in the wrapper for the 
source in question. This allows to exploit the special functionality of the underly- 
ing source, as was done for the BLAST server (by modeling the search algorithm 
as a virtual table) and the publications source (using a template function). The 
wrapper only responds to specific requests in the context of a specific query. As 
the previous examples have shown, sources that only support searches on the 
values of certain fields or on combinations of fields are easily accommodated. 
In a similar way, one can accommodate sources that can only sort results under 
certain circumstances or can only perform certain computations in combination 
with others. Because a wrapper needs only to respond to a request with a single 
plan, or in some cases no plan at all, it is possible to start with a simple wrap- 
per that evolves to reflect more of the underlying data source's query processing 
power. 

This approach to query planning need not place too much of a burden on 
the wrapper writer, either. In a paper presented at the annual conference on very 
large databases [27], Roth et al. showed that it is possible to provide a simple 
default cost model and costing functions along with a utility to gather and update 
all necessary cost parameters. The default model did an excellent job of modeling 
simple data sources and did a good job predicting costs, even for sources that 
could apply quite complex predicates. This same paper further showed that even 
an approximate cost model dramatically improved the choice of plans over no 
information or fixed default values [27]. Therefore, it is believed that this method 
of query planning is not only viable, but necessary. With this advanced system 
for optimization, DiscoveryLink has the extensibility, flexibility, and performance 
required to meet the needs of life sciences applications. 
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11.3 EASE OF USE, SCALABILITY, 
AND PERFORMANCE 

DiscoveryLink provides a flexible platform for building life sciences applications. 
It is not intended for the scientist, but rather for the application programmer, an 
IT worker, or a vendor who creates the tools that the actual scientists will use. 
While it provides only a simple user interface, it supports multiple programming 
interfaces, including such de facto industry standards as ODBC and JDBC. It, 
therefore, can be used with any commercially available tool that supports these 
interfaces, including popular query builders, such as those by Brio or Cognos, 
application-building frameworks such as VisualAge from IBM, or industry-specific 
applications including LabBook, Spotfire, and so on. Alternatively, in-house ap- 
plications can be developed that meet the needs of specific organizations. IBM has 
a number of business partners who are including DiscoveryLink in their offerings 
to create a more complete scientific workbench for their customers. 

Database Administrators will also be users of DiscoveryLink. For these, Dis- 
coveryLink has a Graphical User Interface (GUI) to help with the registration 
process. Yet life sciences applications require more support than this. Complete 
integration also requires the development of tools to bridge between different 
models of data. The life sciences research community is not a homogeneous one. 
Different groups use different terms for the same concept or describe different 
concepts similarly. Semantic mappings must be created, and applications for par- 
ticular communities must be developed. DiscoveryLink provides features that help 
with these tasks, but it does not solve either. For example, views can help with the 
problems of semantic integration by hiding mappings from one data representa- 
tion to another, but the views still must be created manually by the DBAs. 

Another characteristic of life sciences data and research environments is fre- 
quent change, both in the amounts of data and in the schemas in which data is 
stored (causing more work for DBAs). Further, new sources of information are 
always appearing as new technologies and informatics companies evolve. In such 
an environment, flexibility is essential. DiscoveryLink's powerful query processor 
and non-procedural SQL interface protect applications (to the extent possible) 
from changes in the underlying data source via the principle of logical data inde- 
pendence. New sources of information require a new server definition, however, 
and perhaps a new wrapper, and may also require adjusting view definitions to 
reference their data. Changes in a data source's interfaces often can be hidden 
from the application by modifying the translation portion of the wrapper or in- 
stalling a new wrapper with the new version of the source. The query processing 
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technology is built to handle complex queries and to scale to terabytes of 
data. Thus, the database middleware concept itself allows DiscoveryLink to deal 
with the changes in this environment, but it puts a burden on the DBA to admin- 
ister these changes. 

Wrapper writers are a third group of users. The wrapper architecture has 
been designed for extensibility. Only a small number of functions need to be 
written to create a working wrapper. Simple sources can be wrapped quickly, in 
a week or two; more complex sources may require from a few weeks to a few 
months to completely model, but even for these a working wrapper, perhaps with 
limited functionality, can be completed quickly. Template code for each part of 
the wrapper and default cost modeling code are provided for wrapper writers. 
Wrappers are built to enable as much sharing of code as possible, so that one 
wrapper can be written to handle multiple versions of a data source, and so that 
wrappers for similar sources can build on existing wrappers. The ability to separate 
schema information from wrapper code means that changes in the schema of a 
data source require no code changes in the wrappers. The addition of a new data 
source requires no change to any existing wrappers. Thus, the wrappers also help 
the system adapt to the many changes possible in the environment, and the wrapper 
architecture eases the wrapper writer's task. 

Scalability is a fundamental goal of DiscoveryLink. There is no a priori limit 
to the number of different sources it can handle, because sources are independent 
and consume little in the way of system resources when not in use. (Wrapper code 
is loaded dynamically; when not in use, the only trace of the source is a set of 
catalog entries.) There may be limitations in practice if many sources of different 
types are used at the same time, depending on how much memory is available. 
This is akin to the limits on query complexity in relational database management 
systems today, which are not typically hit until several hundred tables are used in 
the same query. Because DiscoveryLink is built on robust and scalable relational 
database technology, there should also be no a priori limit on the amount of data 
the system can handle. Because the data are left in the native stores until needed, 
they can still be updated by directly modifying those stores. (That is, updates do 
not need to go through DiscoveryLink, though it may be convenient to do so for 
relational data sources.) In this case, the update rate is only limited by the update 
rate of the data sources; DiscoveryLink is not a bottleneck. 

As with all database management systems, DiscoveryLink needs to be able 
to handle complex queries over large volumes of data swiftly and efficiently. For 
DiscoveryLink, this task is further complicated by the fact that much, if not all, of 
the data resides in other data sources, which may be distributed over a wide geo- 
graphic area. Query optimization, which is described in this chapter, is the main 
tool DiscoveryLink uses to ensure good performance. There are other aspects of 
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the system that also help. For example, before optimization, the query is passed to 
a rewrite engine. This engine applies a variety of transformations that can greatly 
improve the ultimate performance. Transforms can, for example, eliminate un- 
necessary operations such as sorts or even joins. Others can derive new predicates 
that restrict operations or allow the use of a different access path, again enhanc- 
ing performance. In addition to query rewrite, wrappers are carefully tuned to 
use the most efficient programming interfaces provided by the source (e.g., taking 
advantage of bulk reads and writes to efficiently transport data between sources). 
Additional constructs such as automatic summary tables (materialized views over 
local and/or remote data that can be automatically substituted into a query to save 
remote data access and re-computation) provide a simple form of caching. 

How well does the system perform? There are no benchmarks yet for this 
style of federated data access, and IBM experience to date is limited to a few cus- 
tomers and some experiments in IBM's lab. But, some statements can be made. 
For example, it is known that DiscoveryLink adds little if any overhead. A sim- 
ple experiment compares queries that can be run against a single source with the 
same query submitted against a DiscoveryLink nickname for that source. In most 
cases, the native performance and performance via DiscoveryLink are indistin- 
guishable [8]. In a few cases, due either to the sophisticated rewrite engine or 
just the addition of more hardware power, performance using this three-tiered 
approach (client~Discovery Link~source) is better than performance using the 
source directly (client-~source). This has been borne out by repeated experiments 
on both customer and standard TPC-H workloads. For queries that involve data 
from multiple sources, it is harder to make broad claims, as there is no clear 
standard for comparison. The overall experience so far shows that performance 
depends heavily on the complexity of the query and the amounts of data that must 
be transported to complete the query. Overall, performance seems to be meeting 
customers' needs; that is, it is normally good enough that they do not shy away 
from distributed queries and often are not even aware of the distribution. There 
are areas for improvement, however, including better exploitation of parallelism 
when available and some form of automated caching. 

11.4 CONCLUSIONS 

This chapter described IBM's DiscoveryLink offering. DiscoveryLink allows users 
to query data that may be physically stored in many disparate, specialized data 
stores as if that data were all co-located in a single virtual database. Queries 
against this data may exploit all of the power of SQL, regardless of how much or 
how little SQL function the data sources provide. In addition, queries may employ 
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any additional functionality provided by individual data stores, allowing users the 
best of both the SQL and the specialized data source worlds. A sophisticated query 
optimization facility ensures that the query is executed as efficiently as possible. 
The interfaces, performance, and scalability of DiscoveryLink were also discussed. 

DiscoveryLink is a new offering, but it is based on a fusion of well-tested tech- 
nologies from DB2 Universal Database (UDB), DB2 DataJoiner, and the Garlic 
research project. Both DB2 UDB (originally DB2 Client/Server [C/S]) and DB2 
DataJoiner have been available as products since the early 1990s, and they have 
been used by thousands of customers in the past decade. The Garlic project began 
in 1994, and much of its technology was developed as the result of joint studies 
with customers, including an early study with Merck Research Laboratories. Dis- 
coveryLink's extensible wrapper architecture and the interactions between wrap- 
per and optimizer during query planning derive from Garlic. As part of Garlic, 
wrappers were successfully built and queried for a diverse set of data sources, in- 
cluding two relational database systems (DB2 and Oracle), a patent server stored 
in Lotus Notes, searchable sites on the World Wide Web (including a database of 
business listings and a hotel guide), and specialized search engines for collections 
of images, chemical structures, and text. 

Currently, IBM is working on building a portfolio of wrappers specific to 
the life sciences industry. In addition to key relational data sources such as Oracle 
and Microsoft's SQL Server, wrappers are available for application sources such as 
BLAST and general sources of interest to the industry such as Microsoft Excel, flat 
files, Documentum for text management, and XML. IBM is also working with key 
industry vendors to wrap the data sources they supply. This will provide access 
to many key biological and chemical sources. While wrappers will be created 
as quickly as possible, it is anticipated that most installations will require one or 
more new wrappers to be created because of the sheer number of data sources that 
exist and the fact that many potential users have their own proprietary sources as 
well. Hence, a set of tools is being developed for writing wrappers and training 
a staff of wrapper writers who will be able to build new wrappers as part of the 
DiscoveryLink software and services offering model. As DiscoveryLink supports 
the SQL/MED standard [25] for accessing external data sources, those who would 
rather create their own wrappers (customers, universities, and business partners) 
may do so, too. Hopefully, in this way a rich set of wrappers will quickly become 
available for use with DiscoveryLink. 

From the preceding pages, hopefully it is clear that DiscoveryLink plays an es- 
sential role in integrating life science data. DiscoveryLink provides the plumbing, 
or infrastructure, that enables data to be brought together, synthesized, and trans- 
formed. This plumbing provides a high-level interface, a virtual database against 
which sophisticated queries can be posed and from which results are returned 
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with excellent performance. It allows querying of heterogeneous collections of 
data from diverse data sources without regard to where they are stored or how 
they are accessed. 

While not a complete solution to all heterogeneous data source woes, Discov- 
eryLink is well suited to the life sciences environment. It serves as a platform for 
data integration, allowing complex cross-source queries and optimizing them for 
high performance. In addition, several of its features can help in the resolution of 
semantic discrepancies by providing mechanisms DBAs can use to bridge the gaps 
between data representations. Finally, the high-level SQL interface and the flexi- 
bility and careful design of the wrapper architecture make it easy to accommodate 
the many types of change prevalent in this environment. 

Of course, there are plenty of areas in which further research is needed. For the 
query engine, key topics are the exploitation of parallelism to enhance performance 
and richer support for modeling of object features in foreign data sources. There is 
also a need for additional tools and facilities that enhance the basic DiscoveryLink 
offering. Some preliminary work was done on a system for data annotation that 
provides a rich model of annotations, while exploiting the DiscoveryLink engine 
to allow querying of annotations and data separately and in conjunction. A tool 
is also being built to help users create mappings between source data and a target, 
integrated schema [28, 29] to ease the burden of view definition and reconciliation 
of schemas and data that plagues today's system administrators. Hopefully, as 
DiscoveryLink matures it will serve as a basis for more advanced solutions that 
will distill information from the oceans of data in which life sciences researchers are 
currently drowning, for the advancement of human health and for basic scientific 
understanding. 
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12 
CHAPTER 

A Model-Based Mediator 
System for Scientific Data 

Management 

Bertram Lud~ischer, Amarnath Gupta, and Maryann E. Martone 

A database mediator system combines information from multiple existing source 
databases and creates a new virtual, mediated database that comprises the inte- 
grated entities and their relationships. When mediating scientific data, the techni- 
cally challenging problem of mediator query processing is further complicated by 
the complexity of the source data and the relationships between them. In partic- 
ular, one is often confronted with complex multiple-world scenarios in which the 
semantics of individual sources, as well as the knowledge to link them, require 
a deeper modeling than is offered by current database mediator systems. Based 
on experiences with federation of brain data, this chapter presents an extension 
called model-based mediation (MBM). In MBM, data sources export not only 
raw data and schema information but also conceptual models (CMs), including 
domain semantics, to the mediator, effectively lifting data sources to knowledge 
sources. This allows a mediation engineer to define integrated views based on (1) 
the local CMs of registered sources and (2) auxiliary domain knowledge sources 
called domain maps (DMs) and process maps (PMs), respectively, which act as 
sources of glue knowledge. For complex scientific data sources, semantically rich 
CMs are necessary to represent and reason with scientific rationale for linking a 
wide variety of heterogeneous experimental assumptions, observations, and con- 
clusions that together constitute an experimental study. This chapter illustrates 
the challenges using real-world examples from a complex neuroscience integra- 
tion problem and presents the methodology and some tools, in particular the 
knowledge-based integration of neuroscience data (KIND) mediator prototype 
for model-based mediation of scientific data. 
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12.1 BACKGROUND 

Seamless data access and sharing, handling of large amounts of data, federation 
and integration of heterogeneous data, distributed query processing and appli- 
cation integration, data mining, and visualization are among the common and 
recurring broad themes of scientific data management. A main stream of activity 
in the bioinformatics domain is concerned with sequence and structural databases 
such as GenBank, the Protein Data Bank (PDB), and Swiss-Prot, and much work is 
devoted to algorithmic challenges stemming from problems (e.g., efficient sequence 
alignment and structure prediction). However, in addition to the well-known chal- 
lenges of bioinformatics applications such as algorithmic complexity and scalabil- 
ity (e.g., in genomics), there are other major challenges that are sometimes over- 
looked, particularly when considering scientific data beyond the level of sequence 
and protein data (e.g., brain imagery data). These challenges arise in the context of 
information integration of scientific data and have to do with the inherent seman- 
tic complexity of (1) the actual source data and (2) the glue knowledge necessary 
to link the source data in meaningful ways. Traditional federated database sys- 
tem architectures, and those of the more recent database mediators developed by 
the database community, need to be extended to handle adequately information 
integration of complex scientific data from multiple sources. This extension is a 
combination of knowledge representation and mediator technology. In a nutshell: 

Model-Based Mediation - Database Mediation + Knowledge Representation 

With respect to their semantic heterogeneity (ignoring syntactic and system 
aspects), information integration/mediation scenarios (scientific or otherwise) can 
be roughly classified along a spectrum as follows: On one end, there are simple 
one-world scenarios; somewhere in the middle are simple multiple-world scenar- 
ios; and at the other end of the spectrum are complex multiple-world scenarios. 
An example of a simple one-world scenario (i.e., in which the modeled real-world 
entities can be related easily to one another and come from a single domain) 
is comparison shopping for books. A typical query is to find the cheapest price 
for a given book from a number of sources such as amazon.corn and bn.com. 
An example of a simple multiple-world scenario is the integration of realtor and 
census data to annotate and rank real estate by neighborhood quality. Here, the 
approach combines and relates quite different kinds of information, but the re- 
lations between the multiple worlds are simple enough to be understood without 
deep domain knowledge. Examples of complex multiple-world scenarios are often 
found in scientific data management and are the subject of this chapter. Thus, 
simple and complex here refer to the degree in which specific domain semantics 
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is required to formalize or even state meaningful associations and linkages be- 
tween data objects of interest; it does not mean that the database and mediation 
technology for realizing such mediators is simple. 1 For example, to state the prob- 
lem of what the result of an integrated comparison shopping view should be, 
a basic understanding of a books schema (title, authors, publisher, price, etc.) 
is sufficient. In particular, the association operation that links objects of inter- 
est across sources can be executed (at least in principle) as a syntactic join on 
the ISBN. Similarly, in the realtor example, data can be joined based on the ZIP 
code, latitude and longitude, or street address (i.e., by spatial joins that can be 
modeled as atomic function calls to a spatial oracle). To understand the basic 
linkage of information objects, no insight into the details of the spatial join is 
required. 

This is fundamentally different for complex multiple-world scenarios as found 
in many scientific domains. There, even if data is stored in state-of-the-art (often 
Web accessible) databases, significant domain knowledge is required to articulate 
meaningful queries across disciplines (or within different micro-worlds of a single 
discipline); further examples are offered in the next section. 

Outline 
In this chapter, these challenges are illustrated with examples from ongoing col- 
laborations with users and providers of scientific data sets, in particular from the 
neuroscience domain (see Section 12.2). Then a methodology called model-based 
mediation, which extends current database mediator technology by incorporating 
knowledge representation (KR) techniques to create explicit representations of do- 
main experts' knowledge that can be used in various ways by mediation engineers 
and by the MBM system itself, is presented in Section 12.3. The goal of MBM 
could be paraphrased as: 

Turning scientists' questions into executable database queries. 

Section 12.4 introduces some of the KR formalisms (e.g., for domain maps 
and process maps) and describes their use in MBM. In Section 12.5 the KIND me- 
diator prototype and other tools being developed at the San Diego Supercomputer 
Center (SDSC) and the University of California at San Diego (UCSD) are presented 
primarily in the context of the neuroscience domain. Section 12.6 discusses related 
work and concludes the chapter. 

1. Such simple mediation scenarios often pose very difficult technical challenges (e.g., query processing 
in the presence of limited source capabilities) [1, 2]. 
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12.2 SCIENTIFIC DATA INTEGRATION ACROSS 
MULTIPLE WORLDS: EXAMPLES AND 
CHALLENGES FROM THE NEUROSCIENCES 

Some of the challenges of scientific data integration in complex multiple-world 
scenarios are illustrated using examples that involve different neuroscience worlds. 
Such examples occur regularly when trying to federate brain data across multiple 
sites, scales, and even species [3] and have led to new research and development 
projects aimed at overcoming the current limitations of biomedical data sharing 
and mediation [4]. 

Example 12.2.1 (Two Neuroscience Worlds). Consider two neuro-science labora- 
tories, SYNAPSE and NCMIR 2, that perform experiments on two different brain 
regions. The first laboratory, SYNAPSE, studies dendritic spines of pyramidal cells 
in the hippocampus. The primary schema elements are thus the anatomical enti- 
ties reconstructed from 3D serial sections. For each entity (e.g., spines, dendrites), 
researchers make a number of measurements and study how these measurements 
change across age and species under several experimental conditions. 

In contrast, the NCMIR laboratory studies a different cell type, the Purkinje 
cells of the cerebellum. They inspect the branching patterns from the dendrites of 
filled neurons and the localization of various proteins in neuron compartments. 
The schema used by this group consists of a number of measurements of the 
dendrite branches (e.g., segment diameter) and the amount of different proteins 
found in each of these subdivisions. Assume each of the two schemas has a class 
c with a location attribute that has the value Pyramidal Cell dendrite and 
Purkinj e Cell, respectively. 

How are the schemas of SYNAPSE and NCMIR related? Evidently, they carry 
distinctly different information and do not even enter the purview of the schema 
conflicts usually studied in databases [5]. To the scientist, however, they are re- 
lated for the following reason: Like pyramidal neurons, Purkinje cells also possess 
dendritic spines. Release of calcium in spiny dendrites occurs as a result of neuro- 
transmission and causes changes in spine morphology (sizes and shapes obtained 
from SYNAPSE). Propagation of calcium signals throughout a neuron depends on 
the morphology of the dendrites, the distribution of calcium stored in a neuron, 

2. Information about the two laboratories SYNAPSE and NCMIR is respectively available at 
http://synapses.bu.edu and http-//www-ncmir.ucsd.edu. 



12.2 Scien.~.~otific D a t a  Integration Across Multiple Wo Ids" Examples and Chall...~.~ enges . . . . . . .  . . . . . . .  339 
~ , , , ~  ~ , ~ : ~ . ~ . . ~ , ~ - . , ~ , ~ \ \ , ~ , ~  ~ , ~ , ~ , ~ , ~ , , ~ \ ~ , ~  ~ , ,  ~ ~ ~  ~ ~ ~ ~ ~ ~ ~ ~  ~ ~ ~ ~  ~ 

and the distribution of calcium binding proteins, whose subcellular distribution 
for Purkinje cells are measured by NCMIR. 

Thus, a researcher who wanted to model the effects of neurotransmission in 
hippocampal spines would get structural information on hippocampal spines from 
SYNAPSE and information about the types of calcium binding proteins found 
in spines from NCMIR. Note that neither of the sources contains information 
that would allow a mediator system to bridge the semantic gap between them. 
Therefore, additional domain knowledge--independent of the observed experi- 
mental raw data of each source--is needed to connect the two sources. The domain 
expert, here a neuroscientist, it is easy to provide the necessary glue knowledge 

Purkinje cells and Pyramidal cells have dendrites that have higher-order branches 
that contain spines. Dendritic spines are ion (calcium) regulating components. 
Spines have ion binding proteins. Neurotransmission involves ionic activity 
(release). Ion-binding proteins control ion activity (propagation) in a cell. Ion- 
regulating components of cells affect ionic activity (release). 

To capture such domain knowledge and make it available to the system, the 
proposed approach employs two kinds of ontologies, called domain maps and 
process maps, respectively. The former are aimed at capturing the basic domain 
terminology, and the latter are used to model different process contexts. Ontolo- 
gies, such as the domain map in Figure 12.1, are often formalized in logic (in this 
case statements in description logic [6]; see Section 12.4.1). Together with addi- 
tional inference rules (e.g., capturing transitivity of has),  logic axioms like these 
formally capture the domain knowledge and allow mediator systems to work with 
this knowledge (e.g., a concept or class hierarchy can be used to determine whether 
the system should retrieve objects of class C' when the user is looking for instances 
of C). 

Domain maps not only provide a concept-oriented browsing and data explo- 
ration tool for the end user, but--even more importantly--they can be used for 
defining and executing integrated view definitions (IVDs) at the mediator. The 
previous real-world example illustrates a fundamental difference in the nature 
of information integration as studied in most of the database literature and as 
is necessary for scientific data management. In the latter, seemingly unconnected 
schema can be semantically close when situated in the scientific context, which, 
in this case, is the neuroanatomy and neurophysiological setting described previ- 
ously. Therefore, this is called mediation across multiple worlds and it is facilitated 
using domain maps such as the one shown (see Figure 12.1). 
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A domain map for SYNAPSE and NCMIR (left) and its formalization in descrip- 
tion logic (right). Unlabeled, gray edges ~ "isa" ~ "E". 

12.2.1 From Terminology and Static Knowledge 
to Process Context 

While domain maps are useful to put data into a terminological and thus some- 
what static knowledge context, a different knowledge representation has to be 
devised when trying to put data into a dynamic or process context. Consider, 
for example, the groups of neuroscientists who study the science of mammalian 
memory and learning. Many of these groups study a phenomena called long-term 
potentiation (LTP) in nerve cells, in which repeated or sustained input to nerves in 
specific brain regions (such as the hippocampus) conditions them in such a manner 
that after some time, the neuron produces a large output even with a small amount 
of known input. Given this general commonality of purpose, however, individual 
scientists study and collect observational data for very different aspects of the 
phenomena. 

Example 12.2.2 (Capturing Process Knowledge). Consider a group [7] that studies 
the role of a specific protein N-Cadherin in the context of synapse formation 
during late-phase long-term potentiation (L-LTP), a subprocess of LTP. The data 
collected by the group consists of measurements that illustrate how the amount 
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of N-Cadherin and the number of synapses (nerve junctions) both simultaneously 
increase in cells during L-LTP. Now consider that a different group [8] studies 
a new enzyme called CAMK-IV and its impact on a chemical reaction called 
phosphorylation of a protein called CREB. Their data are collected to show how 
modulating the amounts of CAMK-IV and other related enzymes affect the amount 
of CREB production, and how this, in turn, affects other products in the nucleus of 
the neurons. Ideally, the goal of mediating between experimental information from 
these two sources would be to produce an integrated view that enables an end- 
user scientist to get a deeper understanding of the LTP phenomena. Specifically, the 
end user should be able to ask queries (and get answers) that exploit the scientific 
interrelationship between these experiments. In this way, the integrated access 
provided by a mediator system can lead to new observations and questions, thus 
eventually driving new experiments. 

At the risk of oversimplification, the first group looks at synapse formation 
and is only interested in the fact that some proteins (including N-Cadherin) bring 
about the formation of synapses. They do not look at the processes leading to 
the production of these proteins. The second group looks at a specific chain of 
events leading up to the production of the proteins but does not identify which 
proteins are produced. The semantic connection between these two sources can 
be constructed in terms of the underlying event structure and the way the two 
groups elaborate on different parts of it. Figure 12.2 depicts a simplified view of 
the relationship explained previously and shows the cyclic progression of events 
leading to synapse formation during LTP: Red edges situate the first source with 
respect to the overall process, and blue edges situate the second source. In either 
case, the dashed lines show the subsequence of events the sources glossed over, 
or abstracted. Thus, the first source does not have any information pertaining to 
phosphorylates (CAMK-IV, CREB), and the second source does not have any data 
related to forms (protein, synapse). Neither source has any data about the (black) 
edge synthesizes (gene, protein). 

Domain maps allow data providers to put their source data into a static/ 
terminological context, and process maps allow them to do the same for a dy- 
namic/process context. Together, they capture valuable glue knowledge that resides 
at the mediator and facilitates integration of hard-to-correlate sources: in particu- 
lar, concept-oriented data discovery (semantic browsing) [9], view definition, and 
semantic query optimization [10]. To make model-based mediation effective, it is 
also necessary to hook the elements of the source schema to the domain map and 
the process map. This process, called the contextualization mechanism, is central 
to the MBM framework. 
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12.2 

FIGURE 

A simple process map. Blue and red edges (marked b and r, respectively) depict 
processes about which two data sources/research groups have observational data; 
dashed edges indicate abstractions (short cuts). No observational data is available 
for the edge 6-7; hence, this edge is shown in black (unmarked). 
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MODEL-BASED MEDIATION 

In mediator systems, differences in syntax and data models of s o u r c e s  $1,  $2,  . . .  

are resolved by wrappers that translate the raw data into a common data format, 
typically extensible markup language (XML). In most current mediator systems, 
all other differences, in particular schema heterogeneities, are then handled by an 
appropriate integrated view definition (IVD), which is defined using an XML query 
language [11, 12]. This architecture is extended by lifting exported source data 
from the level of uninterpreted, semistructured data in XML syntax to the seman- 
tically rich level of conceptual models (CMs) with domain knowledge. Then, the 
mediator's views can be defined in terms of CMs (i.e., IVDs are defined in a global- 
as-view fashion) and thus make use of a semantically richer model involving class 
hierarchies, complex object structure, and properties of relationships (relational 
constraints, cardinalities). 

12.3.1 Model-Based Mediation" The Protagonists 
The underlying methodology and procedures of MBM involve users in different 
roles and at different levels: 

�9 Data providers are typically domain experts, such as bench scientists who 
would like to make their data from experimental studies available to the 
community. In MBM, data providers can not only export an XML-queriable 
version of their data, but they can also export domain semantics by lifting 
the exported data and schema information from a structural level (e.g., XML 
DTDs [Document Type Definitions]) to the level of C M s .  3 Allowing data 
providers to situate or contextualize (see Example 12.3.2) their primary data 
themselves has significant benefits. First, data providers know best where their 
data fit on the glue maps. Second, even without the IVDs defined by mediation 
engineers, data are automatically associated across different sources via their 
domain/process map contexts. 

�9 View providers specify integrated view definitions (IVDs), that is, they pro- 
gram complex views in an expressive, declarative rule language. The IVDs 
are defined over the registered complex sources cM ( sl ),  CM ( $2 ) , . . .  and the 
glue knowledge sources in the mediator's repository. Thus, view providers are 

3. The w3c working group XML Schema (http.//www.w3.org/XML/Schema) and similar efforts like 
RELAX NG (http.//www.oasis-open.org/committees/relax-ng/) play an intermediate role between 
purely structure-based models (DTDs) and richer semantic models with constraint mechanisms. 
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the actual mediation engineers and they bring together (as a team or individ- 
ually) expertise in the application domain and in databases and knowledge 
representation. 

The new fused objects defined by an IVD can be contextualized, based 
on the contexts provided by the source conceptual models (see right side of 
Figure 12.6). In this way, an integrated, virtual view exported by the mediator 
becomes a first-class citizen of the federation; it is considered a conceptual 
level source cM (M) itself and can be used just like any original CM-wrapped 
source. 

�9 End users can start with semantic browsing of CMs, by navigating the domain 
and process ontologies in the style of topic maps, in which a user navigates 
through a concept space by following certain relationships, going up and down 
concept hierarchies and so on. Users may also focus their view by issuing 
graph queries over domain or process maps, which return only the subgraphs 
of interest. Eventually, the user can access raw data from different sources, 
which is (due to contextualization) automatically organized by context [9], 
and access derived data resulting from user queries against the mediated views. 

12.3.2 Conceptual Models and Registration of Sources 
at the Mediator 

The following components of the conceptual model CM of a source s can be 
distinguished: 

CM(S) = OM(S) u ONT(S) u CON(S) 

The different logical components and their dependencies are depicted in 
Figure 12.3: 

�9 OM(S) is the object model of the source S and provides signatures for classes, 
associations between classes, and functions. OM(S) structures can be defined 
extensionally by facts (EDB), or intensionally via rules (IDB). 

�9 ONT(S) is the local ontology of the source S. It defines concepts and their 
relationships from the source's perspective. 

�9 ONTG(S) is the ontological grounding of OM(S) in ONT(S), that is, a map- 
ping between the object model OM(S) (classes, attributes, associations) and 
the concepts and relationships of ONT(S). 

�9 CON(S) is the contextualization of the local source ontology relative to a 
mediator ontology, ONT(M). 
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FIGURE 

Model-based mediation: dependencies among logical components. 

�9 IVD(M) is the mediator's integrated view definition and comprises logic view 
definitions in terms of the sources' object models OM(S) and the mediator's 
ontology ONT(M). By posing queries against the mediator's IVD(M), the user 
has the illusion of interacting with a single, semantically integrated source 
instead of interacting with independent, unrelated sources. 

In the following, the local parts of CM(S) (OM(S), ONT(S), and ONTG(S)) 
are presented through a running example. For details on the contextualization 
CON(S) see Example 12.3.2 and the related work on registering scientific data 
sources [13]. 

Example 12.3.1 (Cell-Centered Database [CCDB]). Figure 12.4 shows pieces 
of a simplified version of the conceptual model CM(CCDB) of a real-world sci- 
entific information source called the Cell-Centered Database [14]. The database 
consists of a set of EXPERIMENTS objects. Each experiment collects a number 
of cell IMAGES f rom one or more instruments. For each image, the scientists 
mark out cellular STRUCTURES in the image and perform measurements on them 
[14]. They also identify a second set of regions, called DEPOSITs, in images that 
show the deposition of molecules of proteins or genetic markers. In general, a 
region marked as deposit does not necessarily coincide with a region marked as a 
structure. 
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Classes in OM(CCDB) 

EXPEHIMEXT(id:id, date:date, cell_type:string, images:SET(image)). 

IMA(.;E(ict:id, instrument:l--xtM {c_microscope, e_microscope}, resolution:float, size_x:int, size_y:int, 

depth:int, structures:sET(structure), regions:sET(deposit)). 

,~Tl~l(~rl't{lc(id:id, name:string, length:float, surface_area:float, volume:float, bounding_box:Cube). 

i)rl,O.~IT(icl:id, substance_name:string, deposit_type:string, relative.Jntesity:EN'UM {dark, normal, bright }, 

amount:float, bounding_box:Cube). 
. . .  

Associations in OM(CCDB) 

co_loca lizes_wit h ( DEPOSIT .SU bsta nce_na me, DEPOSIT.Su bstance_na me, STR t: CTU RE. na me). 

surrounds(sl :STRU(rTI'RE, S2:STRI:CTURE). 
. . .  

Functions in OM(CCDB) 

deposit.in_structure(DEPOSIT.id) ~ SET(STRUCTURE.name) 

. . .  

J Source Ontology- ONT'(CCDBi 

[ brain ,,a_.~,',)cer'ebellu'mJ,,o~_.~(~;)-cerebellar cortex)i~,_~_(_~o,"vermis" 
�9 ha~(c,,) . ha.~(p,,.) dendnte ---4 ---4 spine spine process 

cell v , .o j~ . ,_ t . , ,  brain_region 

~globus-pallid us ~c~-~ brain_region . . . .  dena t u ration ~-:~ process. 
. . . . . . . . . . . . . . . . . . . . .  

. ,  

tc.has ( co ) := transitive_closure(has (co) ). 
has_co_pro  := chain(tc_has(co), t c _ h a s  ( p r o ) )  

(ONT1) 

(ONT2) 

(ONT3) 
. . . . . .  

t c _ h a s ( p m  ) := transitive_closure(has(pro)). ( ONT4) 
(ONT5) 

Ontological Grounding- ONTG(CCDB) 

domain(sTRU(~URE.volume) in [0,300] 

domain(sTRU(,'TURE, name) in tc.has(co)(cerebellum) 
domain(EX PERI MENT.cell_type) in tc.has(co)(cerebellum) 
EX PERi MENT.cell_type pvoj cot s_t o globus_pallidus 

DF..X ATURED_PROTEl,~'c3: ~ t  S denaturation. 
. . .  

(OG1) 
(OG2) 
(OG3) 
(OG4) 

12.4 
. . . .  . . . . .  . i 

FIGURE 

Conceptual model for registering the Cell-Centered Database [14]. 
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Note that OM (CCDB) in Figure 12.4 includes classes that are instantiated 
with observed data, that is, the extensional database EDB(CCDB). In addition 
to classes, OM(CCDB) stores associations, which are n-ary relationships between 
object classes. The association c o _ l o c a l i z e s _ w i t h  specifies which pairs of 
substances occur together in a specific structure. The object model also contains 
functions, such as the domain specific methods that can be invoked by a user as 
part of a query. For example, when the mediator or another client calls the function 
CCDB. d e p o s i  t _ i n _ s t r u c t u r e  () ,  and supplies the ID of a deposit object, the 
function returns a set of structure objects that spatially overlap with the specified 
deposit object. 

Next, the source's local ontology, ONT (CCDB) is described. Here, an ontology 
ONT ( S ) consists of a set of concepts and inter-concept relationships, 4 possibly aug- 
mented with additional inference rules and constraints, s The ontological ground- 
ing ONTG ( S ) links the object model OM (S) to the source ontology ONT ( S ). The 
source ontology serves a number of different purposes. 

Creating a Terminological Frame of Reference 
For defining the terminology of a specific scientific information source, the source 
declares its own controlled vocabulary through ONT ( S ). More precisely, ONT ( S ) 
comprises the terms (i.e., concepts) of this vocabulary and the relationships among 
them. The concepts and relationships are often represented as nodes and edges of a 
directed graph, respectively. Two examples of inter-concept relations are h a s  ( co ) 
and h a s  (pro) ,  which are different kinds of part-whole relationships. 6 In Fig- 
ure 12.4, items ONT1 and ONT2 show fragments of such a concept graph. Once 
a concept graph is created for a source, one may use it to define additional con- 
straints on object classes and associations. 

Semantics of Relationships 
The edges in the concept graph of the source ontology represent inter-concept 
relationships. Often these relationships have their own semantics, which must be 
specified within ONT ( S ). Item ONT4 declares two new relationships, tc_has ( co ) 

and t c_has  (pm). After registration, the mediator interprets this declaration and 
creates the new (possibly materialized) transitive relations on top of the base 

4. Most formal approaches (e.g., those based on description logic) consider binary relationships only. 

5. For example, ONT4, ONT5 in Figure 12.4 define virtual relations such as transitive closure over 
the base relations. 
6. By standards of meronyms, there are different kinds of the has relation, including component- 
object has  (co),  portion-mass has (pm), member-collection has (mc), stuff-object has (so) ,  and 
place-area has (pa) [15]. 
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relations has(co) and has (pm) provided by the source S. Similarly, the item 
ONT5 is interpreted by the mediator using a higher-order rule for chaining binary 
relations: 

chain(Ri,R2) (X,Y) if RI(X,Z), R2(Z,Y) 

With this, ONT5 creates a new relationship h a s _ c o _ p m  (X, Y) provided that there 
is a z such that t c _ h a s  (co) (x ,z ) ,and t c _ h a s  (pro) (Z,Y) .  

Ontological Grounding of  oM (S) 

A local domain constraint specifies additional properties of the given extensional 
database and thereby establishes an ontological grounding ONTG ( S ) between the 
local ontology ONT ( S ) and the object model ON ( S ) (see Figure 12.3). Items OG1- 
OG2 in Figure 12.4 refine the domains ofthe attributes EXPERIMENT. c e l l _ t y p e  
and STRUCTURE. name from the original type declaration (STRING). The refine- 
ment constrains them to take values from those nodes of the concept graph that 
are descendants of the concept cerebellum through the h a s  ( co ) relationship. 

This constraint illustrates an important role of the local ontology in a concep- 
tually lifted source. By constraining the domain of an attribute to be concept name, 
c, the corresponding object instance o is semantically about c. In addition, this 
also implies that o is about any ancestor concept, c ' ,  of c where ancestor is de- 
fined via h a s  ( c o  ) edges only. Similarly, if a specific instance, STRUCTURE. name, 
has the value s p i n e  p r o c e s s ,  it is also about dendrite (ONT2 in Figure 12.4). 

In addition to linking attributes to concept names, a constraint may also in- 
volve inter-concept relationships. Assume p r o j e c t s _ t o ( c e l l ,  b r a i n _  
r e g i o n )  is a relationship in the source ontology ONT(CCDB). A constraint may 
assert that for all instances e of class EXPERIMENT, p r o j e c t s _ t o  ( e . c e l l _  
t y p e ,  ' g l o b u s _ p a l l i d u s  ' ) holds (OG3). The constraint thus refines the 
original relationship p r o j e c t s _ t o  to suit the specific semantics of OM (CCDB).  

Such constraint-defined correspondences between ON(S) and ONT(S) are used 
in the contextualization process [13]. 

Intensional Definitions 
In the CM wrapper of a source, S, one can define virtual classes and associations 
that can be exported to the mediator as first-class, queriable items by means of 
an intensional database IDB ( S ). For example, one can create a new virtual class 
called DENATURED_PROTEIN in IDB (CCDB) via the rule" 

DENATURED_PROTEIN (ProtName) if DEPOSIT (ID, ProtName, 

protein, dark .... ),deposit_in_structure(ID) #0 
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Thus, an instance of a DENATURED_PROTEIN is created when a dark protein 
deposit is recorded in an instance of DEPOSIT and there is some structure in 
which this deposit is found. As a general principle of creating a CM wrapper, 
such a definition will be supplemented by additional constraints to connect it 
to the local ontology. For example, assume that ONT (CCDB) already contains a 
concept called p r o c e s s .  Item ONT3 defines d e n a t u r a t i o n  as a specialization 
of p r o c e s s .  The constraint OG4 completes the semantic specification about the 
new DENATURED_PROTEIN object. 

Contextual References 
It is a common practice for scientific data sources to tag object instances with 
attributes from a public standard and to use controlled vocabularies for the values 
of some of these attributes. For example, the source can specify that the domain 
of the DEPOSIT. i d  field can be accessed through an internal method, which, 
given a protein name, gets its i d from a specific database. For example, one can 
use  get_expasy_protein_id to retrieve this information from the Swiss-Prot 
database on the Web. How the source enforces this integrity constraint is internal 
to the source and not part of its conceptual export schema. 

12.3.3 Interplay Between Mediator and Sources 
To address the source registration issue, which components of an existing n-source 
federation that can be seen, or accessed, by the new, n+lSt source need to be spec- 
ified. A federation at the mediator consists of: (1) currently registered conceptual 
models CH(S) of each participating source S, (2) one or more global ontologies 
ONT (M) residing at the mediator that have been used in the federation, and (3) 
integrated views IVD (H) defined in a global-as-view (GAV) fashion. 

Typical mediator ontologies ONT (H) are public, meaning they serve as 
domain-specific expert knowledge and thus can be used to glue conceptual models 
from multiple sources. Examples of such ontologies are the Unified Medical Lan- 
guage System (UMLS) from the National Library of Medicine 7 and the Biological 
Process Ontology from the Gene Ontology Consortium. 8 In the presence of multi- 
ple ontologies, articulations, (mappings between different source ontologies [16]) 

7. The Unified Medical Language System (UMLS) available at http.//www.nlm.nih.gov/research/umls/ 
is, strictly speaking, a metathesaurus, or a semi-formal ontology with a limited set of pre-defined 
relationships such as broader-term/narrower-term. 
8. See http://www.geneontology.org/process.ontology for information about the Biological Process 
from the Gene Ontology Consortium. 
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12.5 

FIGURE 

A domain map (DM) after situating new concepts MyNeuron and MyDendrite 
(dark). 

can be used to register with the mediator information about inter-source relation- 
ships. Note that a source, s, usually cannot see all of the previously discussed 
components (1-3) when defining its conceptual model: Although s sees the medi- 
ator's ontologies, ONT (M), and thus can define its own conceptual model, CM ( S ), 
relative to the mediator's ontology in a local-as-view (LAV) fashion, it cannot di- 
rectly employ another source's conceptual model, CM(S' ), nor can it query the 
mediator's integrated view, IVm (M), which is defined global-as-view (GAV) on 
top of the sources. The former is no restriction because s '  can register CM ( S ' ) ,  
in particular ONT ( S' ), with the mediator, at which point s can indirectly refer to 
registered concepts of s '  via ONT (M). The latter guarantees that query processing 
in this setting does not involve recursion through the Web (i.e., between a source 
s and the mediator M). The dependency graph in Figure 12.3 is acyclic. 9 

Example 12.3.2 (Contextualization: Local-as-View). Consider the domain 
map in Figure 12.5. Lighter-colored nodes correspond to concepts that the me- 
diator understands and a source can see. Now assume a source, s, wants to reg- 
ister information about specific neurons and their dendrites, but the mediator 
ontology (domain map) does not have dedicated names for those specific kinds 
of neurons and dendrites. In MBM this problem is solved by contextualizing 

9. At the cost of loss of efficiency, the restriction no recursion through the Web could be lifted. 
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the new local source concepts as views on the mediator's global concepts: In 
Figure 12.5, the darker-colored source concepts are hooked to the mediator's 
domain map, thereby defining their meaning relative to the mediator's concepts. 
This is achieved by sending the following first-order axioms (here in description 
logic syntax) to the mediator: 

MyDendri te -- Dendrite [-] 3exp. Dopamine_R 

MyNeuron _C Medium_Spiny_Neuron 

R 3proj. Globus_pallidus_external 

H Vhas. MyDendri te 

Thus instances of MyDendrite are exactly those dendrites that express Dopa- 
mine R(eceptor), and MyNeuron objects are medium spiny neurons projecting 
to Globus Pallidus External and only have MyDendr i tes .  Assuming properties 
are inherited along the transitive closure of i s a ,  it follows that MyNeuron, like 
any Medium_Spiny_Neuron projects to certain structures (OR in Figure 12.5). 
With the newly registered knowledge, it follows that MyNeuron definitely projects 
to Globus_Pallidus_External. To specify that it only projects to the latter, a non- 
monotonic inheritance (e.g., using F-logic with well-founded semantics) can be 
employed. 

Note that the intuitive graphical contextualization depicted in Figure 12.5 
is not unique; logically equivalent domain maps may have different graphical 
representations. 1~ For domain maps that can be completely axiomatized using a 
description logic, a reasoning system such as Fast Classification of Terminologies 
(FACT) [17] can be employed to compute the deductive closure and, in particular, 
to derive a unique concept hierarchy and check consistency of a domain map. 

12.4 
. .  

KNOWLEDGE REPRESENTATION FOR 
MODEL-BASED MEDIATION 

This section takes a closer look at the principal mechanisms for specifying glue 
knowledge: ontologies in the form of domain maps (DMs) and process maps 
(PMs). 

10.This is similar to the fact that the same query can have many different syntactic representations. In 
general, equivalence of first-order (or SQL) queries is not decidable. 
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12.4.1 Domain Maps 
As is standard for ontologies, DMs name and specify relevant concepts by describ- 
ing the characteristic relationships among them [18]. In this way, DMs provide the 
basic domain semantics needed to glue data across different sources in multiple- 
world scenarios. DMs can be depicted more intuitively in the form of labeled, 
directed graphs. In contrast to many other graph-based notations, however, DMs 
have a solid formal semantics via a translation to logic rules. The graph form of 
DMs is defined as follows. 

Definition 12.1 Domain Maps 
Let C be a set of symbols called concepts and 7~ a set of roles. A DM is a directed, 
labeled graph with nodes C. A concept C ~ C can be understood as denoting a 
class of objects sharing a set of common properties. To understand how a concept 
C is defined relative to other concepts, one needs to inspect its outgoing edges. 
c ~ C denotes that c is an instance of concept C. 11 Edges are distinguished in DMs 
as follows: 

1. C ~ D (short: C ~ D) defines that every C isa D, that is, c ~ C implies 
c ~ D .  
The subconcept/subclass relation is very common in DMs, thus the isa label 
is usually omitted and the shorthand notation C -* D is used instead. 

2. C ~ D defines that for every c ~ C, there exists some r-related d ~ D. 
Here, r ~ 7~ is a role, or, a binary relation r(c, d) between instances of C and 
D. 

3. C at_~r D defines that for every c ~ C and all x that are r-related to c (i.e., for 
which r(c, x) holds), x ~ D holds. 

4. C -~ D defines that if c ~ C and d ~ D, then they are r-related, that is, r(c, d) 
holds. 

5. A N D - , i { D 1 , . . . ,  Dn} indicates that an AND-node with n outgoing edges to 
D1, . . . ,  Dn, respectively, defines an anonymous concept, the intersection of 
concepts D 1 , . . . ,  Dn. 

6. O R - - ~ i { D 1 ,  . . . ,  Dn}, indicates that an OR-node with n outgoing edges to 
D1, . . . ,  Dn, respectively, defines an anonymous concept, the union of con- 

cepts D 1 , . . . ,  Dn. 

11.Thus, C and D can be viewed as unary predicates. 
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7. C ~ D defines that C is equivalent to D, meaning every C isa D and vice versa. 
It could have been denoted also as C~D.  However, the directed edge keeps 
the distinction between C (the definiendum) and its definition D (definiens). 

Note that D can be an atomic or a defined concept. When unique, AND nodes 
are omitted and outgoing arcs directly attached to the concept being defined. In 
Figure 12.5, unlabeled, grey edges and edges labeled proj (projects-to) correspond 
to isa edges and ex:proj edges, respectively. 

Reified Roles as Concepts 
In DMs, as in description logics, the concepts are being defined, whereas the roles 
are only a means to that end. To capture the semantics of roles, or define their 
properties in terms of each other, they need to be defined in terms of concepts 
themselves. In logic, this "quoting mechanism" is known as reification. 

Example 12.4.1 (Roles as Concepts). Consider a DM involving the roles reg- 
ulates, activates, and inhibits, and assume that in the given domain, activates 
(C, D) and inhibits (C, D) are special cases of regulates (C, D). Instead of in- 
troducing a special notation for sub-roles 12 and then defining the mechanics of 
how roles can be related to one another, roles are turned into first-class citizens 
by making them concepts using an operator, make-concept (mc). The modeling 
capabilities of DMs can be applied to roles and, for example, simply state that 

. . . i s a  . mc( actwates )-+ mc( regulates ). 

By modeling roles as concepts, more domain semantics can be formalized, 
leading to better knowledge engineering. In particular, during query processing, 
such formalized knowledge can be automatically employed by the system: Given 
a DM (formalized as logic rules), an MBM query or view definition involving 
activates and regulates knows that the former is a subconcept of the latter. If 
during query processing a goal r e g u l a t e s ( '  c ~ P ' ,  P r o t e i n )  is evaluated, 
the logic rules corresponding to the DM knowledge allow the system to deduce 
that any result for a c t i v a t e s  ( 'cAMP',  P r o t e i n )  is also an answer for r e g -  
u l a t e s  ( ' cAMP', P r o t e i n ) .  This is correct because a substitutability principle 
holds, which allows the system to replace a concept, D, with any of its subconcepts, 

C, that is, for which C ~ D holds. 

12. RDF(S) has such a notion called s u b p r o p e r t y ;  see h t t p ' / / w w w . w 3 . o r g / T R / r d f - s c h e m a / .  
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Generating the Role Hierarchy 
When making a role into a concept, the isa hierarchy 13 on concepts induces an isa 
hierarchy on roles. 

Domain Maps as Logic Rules 
Domain maps borrow from description logics [19] the notions of concept and 
roles. Indeed, while some of the previously mentioned constructs of DMs have 
equivalent formalizations in description logic [20], the fact that additional mech- 
anisms are needed such as roles as concepts and recursive and parameterized roles 
and concepts, and the fact that executable DMs are wanted during query process- 
ing, require a translation into a more general logic framework. 

In the following, DMs are formalized in a minimal subset of F-logic [21]. The 
semantics of DMs could be formalized in other languages, in particular in other de- 
ductive database languages. The use of F-logic is convenient because a small subset 
of it already matches nicely the minimal requirements established for a MBM sys- 
tem [20]. Moreover, implementations of F-logic are readily available [22, 23] and 
have been used by the authors in different mediator prototypes before [24, 25, 26]. 

In F-logic, c : C and C :: D denote class membership (c �9 C) and subclassing 
(C _ D), respectively. Thus, there are logic rules of the form head if body that 
express the F-logic semantics of ":" and "::". Say that "::" is a reflexive, transitive, 
and antisymmetric 14 relation. 

Definition 12.2 Compilation of Domain Maps 
The mapping qJ : DM ~ FL of domain maps to F-logic is defined as follows: 

1. ~(C) : -  {C : concept}, for all atomic concepts C e C 

2. �9 (r) : -  {r : role}, for all roles r � 9  

3. ~ ( C  ~ D) := {C-- (1)D} u ~(D)  

4. ~ ( C  ~-~ D ) : =  

(a) {r(c ,_d) ,_d  : @D if c : C,_d  = skolD(c)} U ~(D)  

(b) {False i f  c : C,-~(r(c ,_d) ,_d : (I)D))} U ~(D)  

5. ~ ( c a k  r D) "-  

(a) {d: (I)Dif c : C , r ( c , d ) } U ~ ( D )  

(b) {False if c : C, r(c, d), --,d : (I)(D)} U ~(D) 

13. Strictly speaking, the isa does not have to be a hierarchy but can be any directed acyclic graph. 
14. Because concepts are implemented as F-logic classes, this avoids terminological cycles. 
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6. ~ ( C - ~  D ) : =  {r(c,d) i f  c" C,d" r  

7. qJ(AND--~i{Da, . . . ,  19,}) := 
{d" skOIAND i f  d" cI)(D1), . . . , d  :~(Dn)} U qJ(D1) L3 ...  LJ ~(Dn) 

8. q~(OR--~i{D1, . . . ,  Dn}) := 
{d" skoloR i f  d" r v . . .  v d :(I)(Dn)} U ~(D1) U. . .  LJ ~(Dn) 

m 

9. ~ (C  -~ D) := {C .. r  r  .. C if r u ~(D) 

Remarks 
Here, r  is defined similar to ~(D),  but it returns for a compound concept 
description D, a new auxiliary symbol r  representing the compound. For 
atomic D, r  ~(D) holds simply. The symbols skolx produce new Skolem 
function symbols every time they are used in the translation ~: For example, in 
4(a), a symbolic representation is invented for the existentially quantified variable 
_d. Note that c, d, _d are logic variables, while C, D, Di, and False are constants. 15 
The different variants (a) and (b) in the translations of DMs correspond to different 
intended uses: in 4(a), an anonymous object is created for the 3-quantified variable, 
in 5(a), all C.r objects are type coerced into instances of D. In contrast, the (b) 
translations only check whether the constraints induced by the DM edges are 
indeed satisfied and signal an inconsistency (False) if they are not. 

Example 12.4.2 Roles as Concepts Continued. Consider a DM stating that 
i s a  

N P r o t  - .  P r o t e i n ,  NPro t  regulates some Gene, and c f o s  ~2g Gene.16 The 
role regulates is conceptualized by asserting m c ( r e g u l a t e s ) .  When making its 
hidden arguments visible, me ( r e g u l a t e s  (c,  D) ) really denotes a family of 
r e g u l a t e s  concepts. The isa hierarchy on r e g u l a t e s  concepts is derived from 
the isa hierarchy of its arguments. For example: 

mc (regulates (NProt, cfos) ) ~ mc (regulates (NProt, Gene) ) 
i s a  

-+ mc (regulates (Protein, Gene) ) 

Deriving the Role Hierarchy 
Previously the unary operator, me, which turns role literals into concepts was 
introduced. It is implemented in FL as a subclass of the (meta-)class c o n c e p t  by 
asserting me- . c o n c e p t  and adding further rules for deriving the role hierarchy 

15. This is reversed from the usual convention used in the rest of the chapter to match this DM 
notation. 
16. Here, NProt stands for nuclear protein. 
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from the concept hierarchy, which are given as set of me-declarations such as 
r(C, D) "me by the user: 

r(C,D) :mc, r(C',D') :mc, r(C,D) : :r(C',D') 

if (r(C,D) :mcVr(C',D') :mc) ,C: :C', D: :D' 

r(C,D) :mc, r(C' ,D') :mc, r(C,D) : :r(C' ,D') 

if (r(C,D') :mcVr(C',D) :mc), C: :C', D: :D' 

(up/down) 

(mixed) 

Observe that with these rules, the desired result is obtained in Example 12.4.2. 

Recursive Concepts 
Consider the part ofrelationship has_a and its interaction with i s a .  For example, 
MyNeuron isa Medium_Spiny_Neuron, which in turn has_a Neostriatum 
therefore MyNeuron has_a Neostriatum holds (see Figure 12.5). In the general 

case, this gives rise to a recursive rule if C E.~ D and D ha_~a E then C ha~a E. 
Similarly, one can define that i sa  and h a s _ a  are independently transitive and that 
i s a  is anti-symmetric. For such recursive definitions, an intuitive graph notation 
can be devised (e.g., using a dashed edge for the concept being defined to its 
recursive definition, see Lud~ischer et al. [27]). In a declarative, rule-based query 
language like F-logic, an executable specification is: 

has_a(X,Z) if X--Y, has_a(Y,Z). 

Note that x,  Y, z are concept variables. Such F-logic rules can also be used at the 
mediator to handle inductive definitions, such as 0NT4 in Figure 12.4, in particular, 
when the source does not have the capability to evaluate recursive definitions. 

Parameterized Roles and Concepts 
Part of relationships such as h a s _ a  come in different flavors, F (e.g., F e 
{ member~collection, portion~mass, phase~activity,...}) and transitivity does not 
necessarily carry over across flavors [15]. 17 This is most naturally modeled by a pa- 
rameterized role, has_& (V), which is transitive within each flavor, F, but which 
may interact in other ways across flavors. Definition 12.2 shows how domain maps 
can be formalized as logic rules via a mapping qJ. This mapping can be extended 
for parameterized roles and concepts: For example, assume the parameterized 
role has_a (F) should hold between concepts C and D only for some flavors, F, 

17. For example, orchestra has_a musician and musician has_a arm, but not orchestra has_a arm. 
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12.4.2 

satisfying a condition ~0(F). One can extend �9 and compile such a parameterized 

DM edge into F-logic as follows: 

has_a(F) [[~p (F) 
qJ(C > D) -- {has_a(F)c,d if c. C,d-~(D),~(F)} UqJ(D) 

Note that a parameterized role such as has_a (F) has a first-order semantics in 

F-logic despite its higher-order syntax [28]. 

Process Maps 

PMs provide abstractions of process knowledge, that is, temporal and/or causal 
relationships between events that can be used for situating and linking data across 
different sources. Like DMs, PMs are directed, labeled graphs, albeit with a very 

different semantics: Nodes are used to model states and edges correspond to state 
transitions, which are labeled with a process name describing the transition. In 
this way, data providers (e.g., bench scientists) can not only hook their raw data 

to the (given or refined) DMs but also to processes witnessed in their experimental 

studies databases (see Figure 12.2 and Figure 12.8). 

Initial Process Semantics PMo 
{~}~{~} , 

Intuitively, an edge of the form e. - s > s of a PM means that the process Jr 
leads from state s to s'; ~0 is a necessary precondition that must hold in s for Jr to 
happen, and ~ is a postcondition, which holds in s' as a result of Jr. P M0 denotes 
the set of all initial process semantics. 

The edge e,~ of a PM is called a process occurrence of zr in PM. Thus, a 
process occurrence specifies where in a PM a process occurs, and which pre- and 
postconditions, ~0 and ~,  this occurrence satisfies. In addition to the semantics 
implied by the occurrence of e, in PM, a process Jr can have an initial semantics 
associated with the process name, zr. 

To allow for parameterization of processes, edge labels where process names 

are first-order atoms (of the form Jr - Jr(T1,. . . ,  Tn) where each term T/is a logic 
variable or constant) are considered. For example, consider zr = o p e n s  (Channel )  

as describing the opening process of an ion channel. Its initial semantics are defined 

by the expression: 

{-,open (Channel) } opens (Channel) { open (Channel) } 

meaning that any transition along a process occurrence of Jr = o p e n s  ( C h a n n e l  ) 
in a PM must be from a state where o p e n  ( C h a n n e l )  was false. In the successor 
state, however, (after zr has happened), o p e n  ( C h a n n e l )  is true. 
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From Process Maps to Domain Maps 
The first-order predicates occurring in 99 and ~ are called open(Channel), fluents, 
because their truth is state dependent. It is required that the set of fluent predicate 
symbols, ~,  is disjointed from the set, 7 9, of process names and the sets of concept 
and role names C and 7E, respectively. In contrast, the constant parameters used 
in process occurrences, such as C h a n n e l  are allowed to be concepts from C. 

i s a  
For example, a DM may have that NMDA_receptor  - C a l c i u m _ c h a n n e l  

•  
---~channel in which case the process knowledge about the opening of channels 
and the static knowledge from a DM are directly linked through the common 
concept Channel. 

Similarly, just as roles are first-class citizens by reifying them into concepts, the 
same can be done for processes, by specifying additional semantics of processes 
using domain maps. 

Example 12.4.3 (Processes as Concepts). Consider the binds_to (X, Y) process 
with the initial semantics. 

{~bound(X,Y)} binds_to(X,Y) {bound(X,Y) } 

Now consider a DM in which processes were reified as concepts as follows: 

dimerizes (X) isallx>=Y binds_to (X, Y) 

It is easy to see that this (parameterized) DM edge, when translated into F-logic, 
allows the system to conclude in the combined knowledge base (DM U PM0) that 

{~bound(X,X) }dimerizes(X) {bound(X,X)}. 

P r o c e s s  Elaboration and Abstraction 
The edge, e~, of a process occurrence can be seen as an abstraction of a real process. 
In addition to its initial semantics, PM0, and the semantics induced by its concrete 
occurrence in a specific PM, this abstraction can be elaborated by replacing the e~ 
with a (sub-)process map e l a b  ( e~ ), whose initial and final states are s and s'. The 
newly created nodes and edges of the elaboration, e l a b  ( e~ ), are annotated with 
the same unique elaboration identifier eID. The eID includes at least a reference 
to e~, indicating the edge being elaborated, and the author (data provider) of the 
elaboration. 

The converse of elaboration, abstraction, takes a connected subgraph, H( S, so, 
s f, E), with nodes S, edges E, and distinguished nodes so, s f e S (initial and final 
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state), and abstracts FI into a single edge e= = abstract ( H  (S, s o , sf, E) ) .  

The abstracted edges E of H are marked with a unique abstraction identifier aiD, 
which includes a reference to the new abstraction edge, e=, and the author of the 
abstraction. 

Definition 12.3 Process Maps 
A PM H(S, so, s f, E) is a connected, directed graph with nodes, S, labeled edges, 
E, and initial and final states so, s f e S. The edges e,~ of E are of the form 

{~0}~r{q/} 
s -+ s' (e=) 

where the process name 7c is a first-order atom and 9) and ~p are first-order formulas, 
called the precondition and postcondition of e.,  respectively. 

Given an edge e = s~ ~ sb of a process map H(S, so, s f, E), the elaboration, 
elab(e), of e is a process map Fl'(S',sa, Sb, E') such that (1) the initial and final 
states are $a,$b, (2) S' N S = {$a,$b}, and (3) all e' e E' are linked to e via a 
common, unique identifier eid(e', e). 

A connected subgraph of a PM with distinguished initial and final state is called 
a subprocess map (sub-PM). Given a PM FI(S, so, s f, E), the abstraction of a sub- 
PM H'(S',sa, Sb, E') of H, denoted abstract (FI'), is a new edge e,~, = Sa -~  sb, 

where (i) e~, ~ E, and (ii) all e' e E' are linked to e,, via a common, unique 
identifier aid( e', e~, ). 

Marking edges with elaboration and abstraction identifiers guarantees one- 
to-one mappings between an edge and its elaboration and similarly, between a 
sub-PM and its abstraction. In this way, data providers can "double-click" on an 
edge, e,~, and elaborate the processes into a PM, FI, to provide more precise links 
to their data. Conversely, they may collapse a sub-PM, FI, into a single edge, e,~, if 
the data does not provide information at the detailed level of FI and hence is more 
adequately hooked to the overall process, e~. 

Process Maps as Logic Rules 
Similarly to DMs, one can translate PMs into a logic representation ~(PM). The 
difference is that for DMs, the formalization in description logic or F-logic yields a 
first-order logic semantics, whose unique minimal model, AA (DM), interprets con- 
cepts and roles as unary and binary predicates over a set of individuals. The model, 
A/f, implies that data objects, which are linked as concept instances to a DM, have 
the properties defined by the domain map (e.g., the neurons in the images linked to 
MyNeuron in Example 12.3.2 project to Globus_Pallidus_External). In contrast, 
the logic representation of a PM specifies only some process properties via pre- and 
postconditions in the PM and the PM's graph structure. The details of the semantics 
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are omitted due to lack of space. The basic idea is that the graph structure of PMs 
(with its embedded hierarchy of elaborations and abstractions) is formalized via 
a nested Kripke structure in which the nodes of PM (states) have associated first- 
order models and in which labeled process edges specify a temporal accessibility 
relation between states. TM In particular, a process elaboration of an edge, e,~, adds 
to the initial semantics, PM0, and the semantics of the pre- and postconditions of 
the concrete occurrence of e~ in PM, an elaboration semantics (i.e., a sequence of 
intermediate states with first-order constraints along the paths of the elaboration). 

12.5 
~ ~,~ ~ " .  \ . . . . . .  ~, 

MODEL-BASED MEDIATOR SYSTEM AND 
TOOLS 

12.5.1 

At the core of the MBM framework is the KIND mediator system. Other impor- 
tant components are the Spatial Markup and Rendering Tool (SMART) Atlas for 
annotating, displaying, and relating data with brain atlases, the CCDB, defined 
in Example 12.3.1 as the primary source of experimental data, and the Knowl- 
edge Map Explorer (Know-ME) tool for concept-based navigation of source and 
mediated views. For a description of Know-ME, see Qian et al. [29]; the other 
components are described in the following text. 

The KIND Mediator Prototype 
The architecture of the KIND mediator system is depicted on top in Figure 12.6. 
At the bottom, a snapshot of the prototype execution is shown: After the user 
issues a query against the integrated view, the system situates the results on a 
domain map, in this case ANATOM (simple ontology of brain anatomy). By clicking 
on the orange diamonds, the user can retrieve the actual result objects, grouped 
by concept (foreground). 

In the first prototype [9, 30] the F-logic implementation FLORA [31] was used 
as the only query processing and deduction engine. As part of a large, collaborative 
project [4] the prototype is being re-implemented as a modular, distributed medi- 
ator system that includes several additional components, including the following: 

�9 Logic plan generator: Given a user query, Q, and an integrated view definition 
IVD, Q o IVD is translated into a plan generator program PG( Q o IVD) that, 
when executed, produces an initial logic query plan for Q o IVD. Here "o" 
denotes query composition. 

18. See Lausen et al., Section 6 [27] for a formalization of hierarchical processes using nested Kripke 
structures. 
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12.6 

FIGURE 

Top: Architecture of the KIND model-based mediator. Bottom: Snapshot of the 
prototype. Background left shows a mediator shell for issuing ad hoc queries 
against CM(M); background right shows a generated subgraph having the re- 
quested result data shown in their anatomi,cal context. Clicking on (diamond) 
result node retrieves the actual result data (see foreground center). 
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�9 Query rewriter: This module takes a logic query plan and rewrites it into 
an executable, distributed plan based on the capabilities of a source (e.g., 
conjunctive queries with binding patterns or complete SQL). 

�9 Execution plan compiler: For final execution, the rewritten plan is compiled 
into a logic program whose run-time execution sends the corresponding sub- 
queries to wrapped sources, retrieves results, and post-processes them (e.g., 
joins, group-bys, and unions across sources) before sending them to the user. 

�9 SQL plan generator: For relational sources (those having SQL query capa- 
bilities), this wrapper module translates a logic query plan into an equivalent 
SQL statement, similar to Draxler's tool [32]. 

A preliminary version of this new system has been recently demonstrated [13] 
and includes all of the modules previously listed. Plan generation and rewriting is 
implemented using logic programming technology [33]. The SQL plan generator 
has been implemented in Java. It is planned that the final system will include 
specialized inference engines such as FLORA and XsB [34] for handling deductive 
and object-oriented database capabilities, and FaCT [17] for reasoning tasks over 
domain maps that are formalized in description logics. 

12.5.2 The Cell-Centered Database and SMART Atlas: 
Retrieval and Navigation Through Multi-Scale 
Data 

The CCDB mentioned earlier, in Example 12.3.1, houses different types of high- 
resolution, 3D light and electron microscopic reconstructions of cells and sub- 
cellular structures produced at the National Center for Microscopy and Imaging 
Research 19 [14]. It contains structural and protein distribution information de- 
rived from confocal, multiphoton, and electron microscopy, including correlated 
microscopy. Many of the data sets are derived from electron tomography, a pow- 
erful technique for deriving 3D information from electron microscopic specimens. 
Electron tomography is similar in concept to medical imaging techniques like com- 
puterized axial tomography (CAT) scans and magnetic resonance imaging (MRI) 
in that it derives a 3D volume from a series of 2D projections through a structure. 
In this case, the structures are contained in sections prepared for electron mi- 
croscopy, which are tilted through a limited angular range. Examples of datasets 
in the CCDB are shown on the left of Figure 12.7. 

19. The National Center for Microscopy and Imaging is a research facility specialized in the develop- 
ment of technologies for improving the understanding of biological structure and function relationships 
spanning the dimensional range from 5nm 3 to 50~m 3 (http-//www.ncmir.ucsd.edu). 
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12.7 

FIGURE 

Left: Examples of tomographic data sets in the CCDB. A and B show a selectively 
stained spiny dendrite from a Purkinje cell. A is a projection of the volume recon- 
struction (dendrite appears as white against dark background). B is the segmented 
dendrite. C and D show a tomographic reconstruction of the node of Ranvier. C 
is a single computed slice through the volume. D is a surface reconstruction of the 
various components comprising the node. Scale bar in B = 1/~m; in C = 0.51zm. 
Right: Registration of a data set with the Smart Atlas. The user draws a polygon 
representing the location of a data set, in this case a filled Purkinje neuron. The 
user specifies the database containing this data, then enters an annotation and se- 
lects a concept from the UMLS or some other ontology. The concept ID is stored 
in the database. 

A screenshot of the Smart Atlas tool is shown on the right of Figure 12.7. It 
is based on a geographic mapping tool [35] and allows users to define polygons 
on a series of 2D vector images and annotate them with names, relationships, 
and concept IDs from an ontology such as UMLS. This tool provides another 
kind of glue map (in addition to domain and process maps). First, a brain atlas 
such as that by Paxinos and Watson [36] is translated into a spatial format, such 
as Scalable Vector Graphics (SVG). The user then marks up the atlas using the 
Smart Atlas tool (e.g., with concept names from UMLS). Once the atlas has been 
(partially) marked up, it can be queried from the same browser: Clicking on any 
point in the atlas will return the stereotaxic coordinates; clicking on a brain region 
will return the name of that region, along with any synonyms, and highlight all 
planes containing that structure. The Smart Atlas can now be used to register a 
researcher's data to a specific spatial location. This also links the registered data 



364 
12 A Model-Based Mediator System for Scientific Data Management 

12.8 

FIGURE 

Process maps with elaborations and abstractions. 

automatically to the UMLS ontology by virtue of the earlier semantic markup 
of spatial objects. To register source data, the user draws an arbitrary polygon 
representing the approximate data location on one of the atlas planes (Figure 12.7, 
right). The user is then presented with a form that can be used to add annotations 
or provide additional links to concepts of an ontology. Although the UMLS is 
used in the examples shown here, the user will eventually be able to use multiple 
ontologies, including those of their own creation, for semantically indexing data. 
Tools are also being developed to define new terms and relationships in existing 
ontologies. Another component of the system has been demonstrated and shows 
how spatial and conceptual information can be used together in a mediator system 
[37]; see also Martone et al.'s chapter in Neuroscience Databases [38] for further 
details on the use of the Smart Atlas. 

12.6 RELATED WORK AND CONCLUSION 

12.6.1 Related Work 

Significant progress has been made in the general area of data mediation in recent 
years, and several prototype mediator architectures have been designed by projects 
like TSIMMIS [39], SIMS [40], Information Manifold [41], Garlic [42], and MIX 
[43]. While these approaches focus mostly on structural and schema aspects, the 
problem of semantic mediation has also been addressed: In the DIKE system [44], 
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the focus is on automatic extraction of mappings between semantically analogous 
elements from different schemas. A global schema is defined in terms of a con- 
ceptual model (SDR network), in which the nodes represent concepts and the (di- 
rected) edge labels represent their semantic distances, and a score called semantic 
relevance measures the number of instances of the target node that are also in- 
stances of the source node. The correspondence between objects is defined in 
terms of synonymies, homonymies, and sub-source similarities, defined by finding 
maximal matching between the two graphs. 

ODB-Tools [45] is a system developed on top of the MOMIS [46] system 
for modeling and reasoning about the common knowledge between two to-be- 
integrated schemas. They present the object-oriented language, ODLI3, derived 
from a description logic (OCDL). The language allows a user to create complex 
objects with finite nesting of values, union and intersection types, integrity con- 
straints, and quantified paths. These constructs are used to define a class in one 
schema as a generalization, aggregation, or equivalent with respect to another; 
subsumption of a class by another can be inferred. An integrated schema is ob- 
tained by clustering schema elements that are close to one another in terms of an 
affinity metric. 

Calvanese et al. [47] perform semantic information integration using a local- 
as-view approach by expressing the conceptual schema by a description logic 
language called D s  and subsequently defining non-recursive Datalog views to 
express source data elements in terms of the conceptual model. The language Ds 
represents concepts, C, relations, R, and a set of assertions of the form C1 c C2 
or R1 C R2, where R1, R2 are Ds relations with the same arity. Mediation is 
accomplished by defining reconciliation correspondences, or specifications that a 
query rewriter uses to match a conceptual-level term to data in different sources. 

Recently Peim et al. [48] have proposed an extension to the well-known 
TAMBIS system [49]. Their approach is similar to ours [18, 50] in that a logic- 
based ontology (in their case the As description logic) interfaces with an 
object-wrapped source. While F-logic [28] is used here as the internal knowledge 
representation and query language, their work focuses on how a query on the on- 
tology is transformed to monoid comprehensions for semantic query optimization. 

Summary" Model-Based Mediation 
and Reason-Able Meta-Data 

MBM was presented as a methodology that supports information integration of 
scientific data across complex, multiple-world scenarios as found in the neuro- 
science domain. In this framework, object-oriented models and conceptual mod- 
els (CM), domain maps (DM), and process maps (PM) all provide means to 
capture more domain semantics and thus can act as glue knowledge sources to link 
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hard-to-correlate sources. Mechanisms to contextualize source data formally were 
presented. The graph structures thus constructed have been shown to be useful for 
navigating across related concepts and querying local data during navigation [29]. 

Logic formalizations of DMs and PMs can be seen as "reason-able" or "ex- 
ecutable .... meta-data" (see a paper by Horrocks [51]): Unlike conventional, de- 
scriptive meta-data, which are primarily used for data discovery, formal ontologies, 
such as DMs and PMs, can support much more versatile computational tasks in 
a mediator system, as illustrated in this chapter. For example, different and ap- 
parently unrelated data objects can be associated and retrieved together or even 
fused by the mediator's integrated view definition (IVD), because IVDs can be 
defined as deductive rules over DMs and PMs (Figure 12.3). In this way, in model- 
based mediation (MBM), logic rules play the role of executable or computational 
meta-data for scientific data integration. The latter is a challenging application 
and benchmark for combined database and knowledge representation techniques. 
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CHAPTER 

Compared Evaluation 
of Scientific Data 

Management Systems 

Zob Lacroix and Terence Critchlow 

The variety of biological information systems currently available raises the in- 
evitable question: Which system best meets my needs? To decide which system to 
choose, or if a custom system is required, a detailed analysis of user needs should 
be performed. Carefully performing this analysis will identify the best options and 
clarify the buy-or-build decision. 

This chapter outlines several techniques and metrics that can be considered 
when performing an evaluation. Section 13.1 begins this discussion by defining 
evaluation techniques. Section 13.2 presents a set of evaluation criteria in detail 
and describes how they may be applied. Finally, Section 13.3 discusses some of 
the explicit tradeoffs that can be made and the effects they have on the overall 
systems. Unfortunately, neither evaluation of the systems described in previous 
chapters nor comparisons between them are provided because these activities can 
only be performed within the context of specific user requirements. 

13.1 PERFORMANCE MODEL 

Whether users are selecting a new system, evaluating an existing system, or deter- 
mining what requirements a system must meet, they need a performance model. 
The performance model is used to evaluate the system's ability to meet user re- 
quirements and to provide the basis for comparing systems beyond this starting 
point. The model is composed of a set of specifications and associated metrics 
that can be used to evaluate a system. Ideally, it identifies the target environment 
in which the system will actually be deployed and reflects the relative importance 
of all the system features within that environment. Because of this tight coupling 
between a model and its environment, the model cannot be directly applied to 
other environments. 
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The first and most important step in defining a model is to establish the min- 
imal set of specifications required for a system to be considered of interest. This 
could be as simple as using previously defined use cases or system requirements, 
discussed in Section 1.4.1, as the system specification, or it could be as complex 
as performing a new, detailed evaluation that augments these initial requirements 
with priorities and a ranking of all desired functionality. This is the most impor- 
tant step because it immediately removes from consideration those systems that 
do not meet all of the requirements and provides the basis on which all of the 
systems will be compared. 

The list of specifications should be as complete and detailed as possible as 
two significantly different systems may agree on a small set of specifications while 
differing on other characteristics. The more complete the specifications, the fewer 
the number of systems that can meet them and the more likely the solution will 
meet the users' expectations. For example, in the context of the design of a vehicle 
if the specification is to transport a person within a town, two possible designs are 
a car and a bicycle. However, should the specification also include that the vehicle 
be able to carry heavy objects, only the car satisfies the requirements. 

Once the specifications have been identified, they can be translated into a 
collection of characteristics or metrics that define the areas where the system is 
going to be evaluated. These criteria can be represented as an evaluation matrix, 
as outlined in Sections 13.1.1 and 13.2.3. While explicit metrics are useful, eval- 
uating a system must include defining the relative value of appropriate resources 
or capabilities. Section 13.1.2 outlines several cost models that can be used to 
compare systems. Finally, Sections 13.1.3 and 13.1.4 present techniques to collect 
the measurements. 

Evaluation Matrix 
To measure the performance of a system, two feature sets need to be determined: 
(1) the perspectives from which the evaluation will occur and (2) the parameters to 
be measured. Typically, the parameters are derived from the system specifications 
previously collected. Two obvious perspectives are the developers' perspective and 
the users' perspective. Each perspective encompasses most, if not all, the evaluation 
parameters. A matrix representation formed with the perspectives along the x axis 
and the performance parameters forming the y axis can be used to summarize the 
evaluation, as illustrated in Section 13.2.3. 

Cost Model 
There are two common cost measurements used to evaluate systemsmtime and 
space. Time can be considered in various ways and at various granularities. 
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The user response time is the total time needed to answer a query. This time can be 
split between the actual transaction time (time needed to process the query) and 
the transmission time (time needed to display the result to the user). For integrated 
systems, transaction time may be split further: Additional transmissions to several 
systems may be included, as well as the processing time of each of these systems. 
While usually less important, pre-processing time should also be considered to 
ensure the viability of the system. For example, it is important that pre-processing 
delays do not prevent data from being integrated into the system in a timely man- 
ner. The cost function considered for DiscoveryLink is based on time as presented 
in Section 11.2.3. 

Unlike standard models of computation in which uniform access to all data is 
assumed, 1 models for database management systems must take into consideration 
the notion of space, or the actual location of the data. In particular, as most of the 
data do not fit into main memory, they are typically kept in secondary storage (e.g., 
on a magnetic disk). For applications that require the storage of very large data 
sets, as is often the case for scientific applications, tertiary storage devices such as 
tape drives are also used. The cost of moving between storage levels is high because 
data access and writing times take significantly longer. Ultimately, however, the 
appropriate data need to be in main memory to perform any manipulation, such 
as returning the results of a query. In database management systems, a buffer 
manager partitions available main memory into buffers, which are regions into 
which disk blocks can be transferred. All system components that need access to 
the data interact with the buffer manager. 

Space management is tightly coupled to time management. Measuring the 
space required for the system tasks is a way to evaluate the performance of the 
system. Efficient space management may significantly decrease the amount of time 
required to perform required tasks. Space management can be improved by algo- 
rithms that minimize data exchanges between tertiary and secondary storage, limit 
the number of disk accesses, and better exploit data cached in the buffer. In dis- 
tributed systems, increasing the local storage available for use may decrease the 
response time because it provides improved caching or eliminates the need for 
network communication or complex calculations that consume more time than 
accessing local storage. This complex relationship between time and space high- 
lights the importance of understanding the value of different resources and the 
tradeoffs made by each system being evaluated. 

Of course, there are other ways to measure the cost of a system. One obvious 
example is the monetary cost to purchase, license, or use it. A less obvious ex- 
ample is the correctness of results provided by the system, as compared to some 

1. These models are often called random-access models (RAM). 
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ground truth. These costs can be compared against time, space, and each other to 
define other tradeoffs. For example, correctness and time can be traded off against 
each other in a system in which a quick response returns a subset (or superset) of 
the actual results, and a complete answer is only returned if the query is allowed 
to run without restriction. Ultimately, the best cost metrics for a given situation 
depend on which resources are most valuable in that environment. 

Benchmarks 

A software benchmark is a collection of programs used to generate measurements 
for evaluation of some capability, usually efficiency. Benchmarks guide users in the 
selection of a system with respect to specific performance considerations. They also 
offer a good quality assurance test for software developers. 

The development of benchmarks is driven either by an application domain 
(domain-specific benchmark) or by the objective to evaluate a general type of 
system (generic benchmark). For example, the SEQUOIA 2000 storage bench- 
mark [1] is a domain-specific benchmark designed to evaluate earth scientific ap- 
plications, whereas 0 0 7  [2] and XOO7 [3] are generic benchmarks developed 
to evaluate object-oriented database systems and extensible markup language 
(XML)-management systems, respectively. While generic benchmarks provide a 
gauge of performance across a wide range of application domains, the domain- 
specific benchmarks are able to capture peculiarities of the domain that may not 
be common in more general applications. Thus, if an appropriate domain-specific 
benchmark exists, it usually will be preferred. 

The selection of a benchmark first requires the analysis of the characteristics 
the benchmark is expected to evaluate. For example, OO7 aims to capture the abil- 
ity of an object-oriented database system to perform pointer traversals, updates, 
and query processing. Once these characteristics are specified, a data set (schema 
and instance) and queries are designed. The design of the data set needs to be com- 
plex enough to reflect the characteristics of the real data. The structure (schema), 
including data types, and the size of the dataset are the two features that play a 
role. The data itself is often randomly generated. Typically, queries are grouped 
in collections that capture the different characteristics. For example, the queries 
of XOO7 are grouped in three collections: data-driven queries, document-driven 
queries, and navigational queries. 

Benchmarking data management systems involves the evaluation of various 
tasks such as query execution and transactions (updates). In such contexts, a 
benchmark consists of: a schema, a set of data corresponding to that schema, and 
a set of queries. The evaluation of a data management system thus follows these 
steps: (1) define the data structure (schema) in the system, (2) load the data, and 
(3) run each of the queries, recording measurements corresponding to the cost 
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model as defined in Section 13.1.2 (typically the time and the space needed to 
execute the query). The comparison of two systems, therefore, consists in com- 
paring the measurements collected when running the benchmark on each system. 
The analysis of the collected measurements often requires knowledge of internal 
implementation decisions, which are typically not available. For more information 
on benchmarking, refer to Gray's The Benchmark Handbook [4]. 

The design of a benchmark for biological information system is a difficult 
task. For a user to be satisfied, the benchmark must capture the tasks expected 
to be performed by the system. Because mediation systems integrate a variety of 
resources, including Web resources, it is challenging to define a single benchmark 
that can accurately evaluate an entire system. An alternative is to use a collection 
of generic benchmarks and combine the results. This has the advantage of being 
able to leverage existing work, such as relational database and XML benchmarks, 
where appropriate. 

User Survey 
Human computer interaction (HCI) is the discipline concerned with the design, 
evaluation, and implementation of interactive computing systems for human use 
and the major phenomena surrounding them [5]. Thus, most HCI research fo- 
cuses on the design and development of user interfaces. A survey is a common 
approach used by the HCI community for evaluating interfaces. These surveys 
obtain feedback from a large number of users on a variety of characteristics and 
allow researchers to identify the strengths and weaknesses of an interface. Their 
use of surveys to collect requirements and evaluate satisfaction can be exploited 
to design and evaluate an entire system. Unfortunately, despite previous efforts, 
there is no commonly accepted characterization of the various tasks that life scien- 
tists perform with data management systems. As there is no standard functionality 
common to bioinformatics applications, each system must be evaluated by a survey 
designed around the needs of a specific set of users. The evaluation of such a sys- 
tem is further complicated because the expectations of life scientists for computer 
support evolve significantly over time. 

In addition to evaluating individual systems, user surveys can be used to iden- 
tify and influence trends across an entire scientific domain. For example, consider 
a survey performed among 31 biologists at Arizona State University, in which 26 
agreed that luck was involved in biological discovery, and all agreed on the impor- 
tance of creativity [6]. Despite being a fairly small survey, it was able to highlight 
the need for systems that encourage, not discourage, creative exploration of the 
data. Another classic survey is the set of unanswerable queries published in the De- 
partment of Energy (DOE) report on Genome Informatics [7] and listed in Figure 
8.1. These queries, the result of input from a large number of geneticists, have 
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driven significant improvement in biological data management by motivating the 
shift from human processing of data to machine processing and manipulation of 
data. A more recent survey to identify and classify tasks in bioinformatics was 
conducted interviewing 30 active biologists from academia and industry [8]. Out 
of the 315 identified tasks, 54 % were similarity search, multiple pattern and func- 
tional motif search, and sequence retrieval. This emphasizes the need for biological 
interfaces to combine traditional query languages, such as structured query lan- 
guage (SQL), with searching and analysis tools. Finally, surveys can provide insight 
into user satisfaction with a system. An example of this type of survey is the Baylor 
College of Medicine (BCM) Search Launcher User Survey sponsored by the DOE. 2 

13.2 EVALUATION CRITERIA 

A consistent set of metrics is needed to compare systems effectively. These metrics 
should distinguish between the approaches and identify their relative strengths and 
weaknesses. There are a wide variety of metrics that can be used, each with their ad- 
vantages and disadvantages. The following six characteristics can be applied using 
both the computer science (implementation) and the life science (user) perspectives 
to evaluate genomics data management systems. The metrics are efficiency, exten- 
sibility, functionality, scalability, understandability, and usability. These metrics 
cover a wide range of issues of practical concern. Unfortunately their definitions 
are vague, and they can be applied with various degrees of vigor. While this makes 
them difficult to apply consistently, it also provides the flexibility required to dif- 
ferentiate between alternative approaches and a variety of environments. Each 
user team may refine and specify these criteria with appropriate benchmarks to 
measure the characteristics of interest with respect to a customized cost model or 
user survey, as introduced in Section 13.1. Typically, cost models will be used to 
evaluate implementation performance and user surveys will be used to measure 
users' satisfaction. 

The implementation perspective captures the characteristics of the system from 
the technical point of view. Much of this perspective is driven ultimately by the 
user requirements. However, it reflects only one of many possible implementations 
satisfying these requirements. While both views are helpful in understanding a 
system, and there is significant overlap between them, the true success of a system 
is determined by whether or not its users are satisfied. Thus, we believe the user 
perspective is ultimately the more important. 

2. The BCM Search Launcher User Survey is available at 
http ://search launcher.bcm.tmc.edu/user_survey/user_survey.htmI. 
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13.2.1 The Implementation Perspective 
The implementation perspective aims to fulfill the user's expectations, subject to 
organizational constraints, by optimizing the six metrics subject to the goals and 
constraints they define. 

Efficiency 
Implementation efficiency is a combination of query efficiency, data storage size, 
communication overhead, and data integration overhead. Query efficiency reflects 
the ability of the system to respond to user queries and reflects factors such as the 
correlation between the data format and the expected queries. Data storage size 
can be affected by choices such as using flat files or a relational database and repli- 
cating data locally or accessing them remotely. Communication overhead is char- 
acterized by data transfer requirements as well as the complexity and frequency 
of commands executed remotely. The data integration overhead is defined by the 
complexity of the transformations being performed between the data sources and 
the user interface. 

Each of these four characteristics can be divided between the efficiency during 
a pre-processing step and the efficiency in response to a query. Often there is a 
tradeoff between characteristics when deciding at which time to perform a task. 
For example, the transformation of a data element may be performed as a pre- 
processing step in a data warehouse, where it is converted prior to being loaded 
into the warehouse, or at run time in a federated database, where it is converted on 
the fly in response to a query. This decision may have a dramatic impact on the sys- 
tem's required storage. Although the overall efficiency of the system is important, 
many systems will seek to reduce the query response time because pre-processing 
time can be amortized over all of the queries. 

Efficiency is a criterion that clearly distinguishes the systems presented in 
this book. Not surprisingly, mediation systems developed in industry such as dis- 
coveryHub, the commercial version of Kleisli (see Chapter 6), or DiscoveryLink 
(see Chapter 11) usually perform better than the academic ones. This can be 
explained by the industry's need to provide robust and efficient systems. Sim- 
ply stated, optimizations are typically designed and developed for industrial sys- 
tems, and they appear to be less of a priority for academic systems. In general, 
efficient query processing is not a requirement for the presented academic sys- 
tems. Some architectural choices lead to systems that are more efficient in certain 
ways. Simpler data integration platforms, such as link-driven federations, offer ef- 
ficient query processing because they do not perform data conversion or complex 
data manipulation. In addition, partially materialized approaches with indices, or 
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completely materialized approaches in data warehouses, are often more efficient 
than non-materialized onesmas explained in Section 13.3.1. Thus, link-driven fed- 
erations such as Entrez or SRS (see Chapter 5) often rely on large, pre-computed 
indices to optimize query processing: SRS queries usually take less than one minute 
to complete. 

Kleisli automatically optimizes queries, and its space management is generally 
more economical than flat files. However, it has translation time overheads when 
mapping data between integrated sources and the system. While such translation 
times may be reduced, they are inevitable in a mediation architecture. Discov- 
eryLink performs two optimization steps: query rewriting followed by cost-based 
optimization. Query rewriting transforms the user's query into a semantically 
equivalent query (i.e., a query that will return the same output) for which more 
efficient execution plans are possible. Such techniques were described in Chap- 
ter 4. Cost-based optimization exploits a broad range of alternative execution 
strategies, taking input from the wrappers and assessing the cost of functions, 
scans, and general sub-queries performed at the integrated source [9, 10]. Such 
methods were introduced in Section 4.4. 

Extensibility 
Extensibility refers to the ease with which the functionality of the system can be 
increased. New requirements can result in the need for a new query (in the simplest 
view) or new tools and types of data. Examples of these types of extensions include 
the addition of a new similarity search query, the inclusion of expression array 
data in a system that previously contained only sequence data, and the integration 
of a new clustering tool. The evaluation of extensibility is complex because most 
systems are extensible only in certain ways. For example, a given system may 
simplify adding new tools that use the data already in the system, but integrating 
new types of data to that same system may be very challenging. While all of 
these extensions can, in theory, be made to any system, the actual implementation 
effort varies greatly depending on the system design. This characteristic attempts 
to quantify the effort required for the system being evaluated. 

Many systems presented in this book rely on a mediation architecture that 
provides a virtual view to users while keeping the data in each integrated source. 
These approaches typically use wrappers to access and retrieve data from the inte- 
grated sources. Extending the system to new applications usually means developing 
new wrappers and registering them with the system. Systems that exploit meta- 
information about integrated sources require additional information. Thus, typi- 
cally these systems are a little less extensible but also more efficient. A system with 
a semantically consistent view, such as TAMBIS, appears to be less extensible than 
others because its semantic model must be extended to include all new concepts 
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and relationships in the appropriate way so that queries may be asked against 
the new data. Within TAMBIS, this implies annotating the sources and services 
model (see Section 7.4.1). Extensibility may also be more affected by materialized 
approaches. Partial materialization through indices may be costly to extend, and 
totally materialized approaches may rely on a management system that is difficult 
to extend. 

Functionality 
Functionality reflects the system's ability to perform a wide variety of analysis 
over the data contained within it. This includes both the types of queries that 
the system supports and their complexity. For example, a simple keyword search 
reflects a fairly low level of functionality, a system that supports keyword searches 
using wildcards across a subset of the attributes would rate better, and a system 
that augments keyword searches with sequence homology comparisons and data 
clustering would have much greater functionality. 

Functionality of presented systems often depends on their usage. Industrial 
systems are widely used; therefore, more functionality is provided or made avail- 
able. Alternatively, academic systems are designed for specific usage in a limited 
context and thus often provide fewer capabilities. 

Scalability 
Three basic components comprise scalability: the amount of data the system can 
handle, the number of users (queries) the system can simultaneously support, and 
the number of data sources that can be integrated. The amount of data a system 
can handle is not only limited by available disk space (a limit that is becoming 
less significant as disks become both larger and cheaper) but also by its ability to 
effectively manipulate that data. For example, a federated system that dynamically 
retrieves data from external sources may be designed to respond to queries without 
needing a disk-based representation. However, if a query returned a large amount 
of data, it may overload the infrastructure, either because of network bandwidth 
problems or an inability to hold the results in memory. Similarly, systems need to 
be designed for multiple users if they are to function beyond a single scientist's 
desktop. A system may be designed to work for a single user, making the assump- 
tion that there would only be one query executing at a time to simplify resource 
allocation. While this assumption holds, there would not be a problem, but if the 
system is deployed in a multi-user environment, this will quickly become a limiting 
factor. Even if a system is designed for concurrent use, there are often real limits 
on the number of users it can support. These restrictions become important as 
the system extends its user base from an individual to a lab and eventually to the 
larger community. Finally, there are several factors affecting the number of data 
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sources that can be integrated realistically into a system, including scarcity of local 
resources, communication bandwidth, query response times, and the incremental 
effort required to integrate and maintain each additional data source. These fac- 
tors are conflicting, and finding an acceptable balance requires understanding your 
scientists' needs. 

The relative importance of each of these three components varies with the 
underlying approach the system uses and the environment in which the system is 
expected to be used. For example, values appropriate for a single-user, desktop 
system in a small company would be very different from those for a large company 
supporting a community resource. Serious consideration to the number of sources 
that can be integrated must be given when evaluating systems because scientists 
constantly want to access more data. 

Again, not surprisingly, systems designed and developed in industrial con- 
text appear to scale better than academic ones. The main reason is that scala- 
bility is often not part of academic systems requirements, whereas it is typically 
mandatory in industrial context. Kleisli regularly handles hundreds of megabytes 
and more than 60 types of integrated data sources. However, each invocation 
of Kleisli only runs one top-level query at a time through the system, generat- 
ing multiple concurrent sub-queries. In contrast, TAMBIS only provides access to 
five data sources and offers little explicit support for simultaneous queries and 
users. 

Understandability 
Understandability expresses the clarity of the system design. If the system is well 
designed (e.g., using strong software engineering practices and object-oriented or 
component-based techniques), as new developers join the project they are able to 
understand easily the implementation details and quickly begin contributing to the 
project. If the system is poorly designed and overly complex, people not involved 
in the original design of the system require additional time before they are able to 
make significant contributions to the project. In addition, their contributions are 
likely to further complicate the architecture because identifying the most effective 
way to implement a specific feature is difficult without a solid understanding of 
the overall architecture. Unfortunately, without intimate access to implementation 
details, this characteristic is very hard to determine. 

All presented systems offer a clear and understandable design: link-based fed- 
eration architecture (see Chapter 5), mediation architecture combined with wrap- 
pers (see Chapters 6, 7, 8, 11, and 12), or warehousing (see Chapter 10). These 
designs are described in detail in their respective sections and enable new devel- 
opers to understand their overall architecture quickly. 
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Usability 
Implementation usability reflects the ability of the user to modify the system be- 
havior and the exposure of underlying system capabilities through some type of 
application or user interface. Of particular interest is the ability to adapt system 
capabilities based on specific user needs. For example, while a system may be built 
on a relational database, it may not provide users full SQL query access, choosing 
instead to limit the allowable queries by publishing only a simple keyword search 
interface. There is more to usability, however, than simply expanded capability. 
While providing a wide variety of complex queries is generally valuable, as we 
discuss in the next section, it is important to ensure that they are presented in a 
useful way. It is easy to overwhelm users by providing too many options~forcing 
people to become experts in your tool before they are able to accomplish anything. 

Usability is often not a specification for systems developed in academic con- 
texts. TAMBIS (see Chapter 7) does not provide an API, and its limited extensibility 
may further restrict this ability. KIND provides an API only for certain features. In 
contrast, Kleisli provides access to its high-level query languages (CPL and sSQL), 
an API to SMLNJ function calls, and the Pizzkell suite of JDBC-like interfaces 
(CPL2Perl and CPL2Java) [11]. SRS requires programming skills in the Icarus 
language to modify the system. It is likely that the next generation of systems, 
including future versions of existing ones, will focus on including new interfaces 
to facilitate their maintenance. For example, a graphical administration tool for 
SRS that would obviate the use of Icarus is currently under development. 

Summary 
The implementation perspective can be expressed faithfully with the six metrics. 
However, it is difficult to optimize all of them concurrently. Indeed, they are far 
from being independent, with some metrics being positively correlated and others 
being negatively correlated. For example, the use of a query language such as SQL 
may improve both extensibility and efficiency. Extensibility could be improved 
because the system would be able to express a wider variety of queries, and the 
efficiency could be improved by its ability to perform query optimization. Similarly, 
a poorly designed system with minimal understandability will be less extensible. 
On the other hand, a system that is highly functional, with many analysis tools 
available, is likely to be inefficient by combining these various functionalities. 
Every system must find the appropriate set of tradeoffs to balance the needs and 
expectations of its target users. One of the goals of this book is to aid potential 
developers and users in identifying their needs and choosing the best approach 
and system for them. 
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13.2.2 The User Perspective 
The user perspective defines the requirements of the system to be developed or 
chosen. The metrics presented here can be used to identify the users' expectations 
and needs and evaluate systems accordingly. 

Efficiency 
From the user's point of view, efficiency is evaluated as the ability of the system 
to perform a single task in a satisfactory timeframe and its overall ability to sup- 
port its user base in the succession of their complex tasks. This metric has two 
components. The first is similar to the implementation perspective but at a slightly 
higher level: How quickly does the system respond to queries? In effect, this view 
summarizes implementation efficiency from a purely practical perspective. If the 
system provides a reasonable response time, the efficiency is deemed acceptable. 
The faster the response time, the better the ranking. The second is a consolidation 
of the remaining categories: How effectively can users ask the system the ques- 
tions they need answers to, get the answers, and continue using those answers 
in their analysis? Given that the second component is reflected in the remaining 
characteristics, only the first definition will be considered. 

Extensibility 
Extensibility expresses the users' ability to ask new questions and customize the 
system to meet their specific needs. While plug-and-play search and analysis tools 
are a long way away, a well-designed system often allows the user to extend it 
in limited ways without becoming intimately familiar with the underlying system. 
These extensions may be simple variations on previous queries, such as chang- 
ing the attributes being searched during a keyword search, they may be slightly 
more complicated variations on a query, such as changing the sequence homol- 
ogy algorithm used to perform a search, or they may be a completely new type 
of query. Extensibility is not limited to queries; it also reflects the ability of the 
user to introduce new data, and new data types, into the system. For example, 
it reflects the user's ability to include data from a new data source. As with im- 
plementation extensibility, many systems theoretically can be extended by their 
users. This characteristic reflects how much effort a user must expend to add new 
types of queries or data and how much programming skill is required to perform 
this extension. In a truly extensible system, only minimal programming expertise 
would be required. 

The presented approaches assume that users are not actively involved in system 
extensions. However, they typically provide users as much flexibility as possible in 
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customizing their queries. For example, when performing a similarity search, the 
various program parameters and the choice of application version are made avail- 
able. User extensibility typically is linked to user functionality, and all presented 
systems perform well for both criteria. 

Functionality 
User functionality reflects not only the different types of queries that can be asked, 
but also how those queries can be changed and combined to form new queries. For 
example, a BLAST search that accepts a protein sequence is useful, but being able 
to BLAST both protein and nucleotide sequences is better. And the ability to take 
the results of a BLAST search and use them as input into other BLAST searches, 
or send them to an analysis program, is even better still. When querying a system, 
scientists have in mind a specific question they are trying to answer, which may 
or may not be part of a much larger question. The more of the question that can 
be answered within a single environment, the more useful that environment is. To 
completely answer a question, a system must have both the correct types of data 
and the right capabilities. The more questions a system can answer, the greater its 
functionality. 

All presented systems are generic in that they are not designed to answer 
a single query or even a small set of queries in a particular context. Instead, 
they provide query languages that allow the formulation of a variety of queries. 
The advantages of generic systems are presented in Chapter 4. In addition, some 
systems such as DiscoveryLink and Kleisli provide access to multiple sources and 
analytical applications. This variety of integrated resources significantly increases 
users' functionality. 

Scalability 
User scalability has some components shared with system scalability: Can the 
system handle the number of users that it has, and does it provide access to enough 
data and tools to make it worth using? However, it also has a unique component: 
the ability of the system to handle large numbers of input objects. This is becoming 
an increasingly important issue as genomics moves from small-scale science, in 
which a researcher may focus on a single gene, to large-scale analysis of entire 
genomes. If a system is only capable of processing a single input at a time, it will 
not be useful to users who need to analyze hundreds or thousands of these objects. 
For example, Web-based homology searches often take only a single sequence at 
a time as input. As a result, these interfaces quickly become of limited use if a 
scientist has hundreds of clones to analyze. Unless scalability is part of the system 
requirements, academic systems typically do not scale well. 



13 Compared Evaluation of Scientific Data Management Systems 
384 

Understandability 
Although a system cannot be considered usable without also being understandable, 
we separate the concepts for evaluation purposes. For this discussion, a system is 
understandable if its users not only understand the queries being asked, but also 
the results being returned. This means that the semantics of both the interface 
and the data should be clear and well documented so that when a question is 
asked, what that question was is known exactly. This sounds obvious, but it is 
often overlooked. For even simple queries such as keyword searches, the semantics 
may not be clear. Questions such as "Is the text of the entire system searched 
for that keyword or are only certain objects or attributes searched?" must be 
answered. Failure to understand the semantics of a query may lead to asking 
the wrong question or misinterpreting the results. Furthermore, it may appear 
that the semantics of a system is always well defined. Unfortunately, this is not 
always the case. Many systems do not precisely define the data they contain and 
instead rely on the user's domain expertise to guide them. This situation is even 
worse in integrated systems in which returned data have been obtained from a 
variety of data sources. In these systems, there may be many subtle semantic 
inconsistencies. Even in systems that claim to provide consistent views of the data, 
the precise semantics associated with some aspects of the data may be elusive. 
These types of implicit semantics dramatically reduce the understandability of the 
results. 

Most presented systems were designed to be understandable to their scientific 
users. Some systems put a creative emphasis on this criteria and provide original 
solutions. TAMBIS focused on a transparent access to data through an ontology 
reflecting the scientists' view of the data. KIND returns outputs in the context 
of a domain map~a graphical representation of ontological knowledge of the 
scientific domain. In contrast, other systems, such as Kleisli and DiscoveryLink, 
rely on the data organization provided by the integrated sources, assuming that 
this organization is appropriately known and understood by users. 

Usability 
Usability is probably the most important feature of a system and one of the most 
difficult to obtain. While focusing on facets of the other characteristics, it is remark- 
ably easy to develop a system that, despite providing all of the required efficiency, 
extensibility, functionality, and scalability, is unusable by its target audience. This 
occurs because programmers often design a system for themselves, forgetting that 
their users are not programmers and have no desire to become programmers. 
An ideal system provides an intuitive query interface, directly supporting only the 
queries that need to be executed and returning the results in the most useful format. 
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In reality, the number of scientists and types of queries a system needs to support 
makes this impossible. One approach to increasing the usability of a system is to 
provide multiple interfaces targeting different user groups. For example, a graph- 
ical interface can help novice users comfortably interact with a system, but it may 
be too slow for experts. To increase its usability, a system could either add short- 
cut keys or have a separate command line interface for experts. While requiring 
additional development effort, this would allow users familiar with the system to 
perform their queries quickly, while not forcing novices to learn the more advanced 
interface immediately. 

13.3 
. . . .  

TRADEOFFS 

This section explores some of the tradeoffs to be considered when evaluating 
systems and some of the unique characteristics of biological data management 
systems that complicate their design and evaluation. As with the evaluation met- 
rics, there is no clearly best approach, but rather the user requirements and system 
constraints need to be included in the evaluation. The purpose of the following 
sections is simply to call out certain characteristics and encourage the readers to 
consider them. This is meant to be an illustrative, not exhaustive, list. There are 
many tradeoffs and considerations that are not discussed but that may be impor- 
tant for evaluating a system within a specific environment. 

13.3.1 Materialized vs. Non-Materialized 

Materialized approaches usually are faster than non-materialized ones for query 
execution. This makes intuitive sense because the data is stored in a single location 
and in a format supportive of the queries. To confirm intuition, tests were run in 
1995 with several implementations of the query: "Retrieve the HUGO names, 
accession numbers, and amino acid sequences of all known human genes mapped 
to chromosome c" [12]. These tests were performed using the Genomic Unified 
Schema (GUS)warehouse as the materialized source and the K2/Kleisli 3 system as 
the non-materialized source. The query requires integrating data from the Genome 
DataBase (GDB), the Genome Sequence DataBase (GSDB), and GenBank. Mea- 
sures showed that for all implementations, the warehouse is significantly faster. 
In certain cases, queries executed by K2 as part of this evaluation failed to com- 
plete due to network timeouts. The expression of the query (using semi-joins 

3. The version of K2 used for this comparison is much earlier than the version presented in 
Chapter 8. 
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rather than nested loop iterations) also affected the performance of the execution 
of the query. 

In addition to the communication overhead, the middleware between the user 
interface and the remote data may introduce computational overhead. Recently, 
tests have been performed at IBM to determine whether or not a middleware 
approach such as DiscoveryLink (presented in Chapter 11) affects the access costs 
when interacting with a single database. They conducted two series of tests in 
which DiscoveryLink was compared to a production database at Aventis [13]. 
The results show that, in the tested context, for a single user, the middleware did 
not affect the performance. None of the tested queries involved the manipulation 
of large amounts of data; however, they presented many sub-queries and unions. 
In some cases, accessing the database through a middleware and a wrapper was 
even faster than the direct access to the database system. The load test shows that 
both configurations scale well, and the response times for both approaches are 
comparable to the single-user case. 

There are a variety of factors to be considered beyond the execution cost. Ma- 
terialized databases are generally more secure because queries can be performed 
entirely behind a firewall. Non-materialized approaches have the advantage that 
they always return the most up-to-date information available from the sources, 
which can be important in a highly dynamic environment. They also require sig- 
nificantly less disk space and can be easier to maintain (particularly if the system 
does not resolve semantics conflicts). 

Data Distribution and Heterogeneity 
Many systems presented in the previous chapters are mediation systems. Media- 
tion systems integrate fully autonomous, distributed, heterogeneous data sources 
such as various database systems (relation, object-relational, object, XML, etc.) 
and flat files. In general, the performance characteristics of distributed database 
systems are not well understood [14]. There are not enough distributed database 
applications to provide a framework for evaluation and comparison. In addition, 
the performance models of distributed database systems are not sufficiently de- 
veloped, and it is not clear that the existing benchmarks to test the performance 
of transaction processing applications in pure database contexts can be used to 
measure the performance of distributed transaction management. Furthermore, 
because the resources are not always databases, the mediation approach is more 
complex than the multi-database and other distributed database architectures typ- 
ically studied in computer science. 

For many bioinformatics systems, issues related to data distribution and het- 
erogeneity are considerable and significantly affect the performance. As a result, 
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they typically integrate only the minimal number of sources required to perform a 
given task, even when additional information could be useful. The complexity of 
this domain and the lack of objective information favor domain-specific evaluation 
approaches over generic ones for this characteristic. 

Semi-Structured Data vs. Fully Structured Data 
Previous chapters have pointed out that scientific data are usually complex, and 
their structures can be fluid. For these reasons, a system relying on a semi-structured 
framework rather than a fully structured approach, such as a relational database, 
seems more adequate. Although there are systems that utilize meta-level capabili- 
ties within relational databases to develop and maintain flexibility, they are usually 
not scalable enough to meet the demands of modern genomics. The success of XML 
as a self-describing data representation language for electronic information inter- 
change makes it a good candidate for biological data representation. The design 
of a generic benchmark for evaluating XML management systems is a non-trivial 
task in general, and it becomes much more challenging when combined with data 
management and performance issues inherent to genomics. 

Some attempts have been made to design an XML generic benchmark. Three 
XML generic benchmarks limited to locally stored data and in a single machine 
or single user environment have been designed: XOO7 [3], XMach-1 [15], and 
XMark [16]. XOO7 attempts to harness the similarities in data models of XML 
and object-oriented approaches. The XMach-1 benchmark [15] is a multi-user 
benchmark designed for business-to-business applications, which assumes the data 
size is rather small (1 to 14 KB). XMark [16] is a newer benchmark for XML data 
stores. It consists of an application scenario that models an Internet auction site 
and 20 XQuery queries designed to cover the essentials of XML query processing. 

XOO7 appears to be the most comprehensive benchmark. Both XMark and 
XMach-1 focus on a data-centric usage of XML. All three benchmarks provide 
queries to test relational model characteristics such as selection, projection, and 
reduction. Properties such as transaction processing, view manipulation, aggre- 
gation, and update, are not yet tested by any of the benchmarks. XMach-1 cov- 
ers delete and insert operations, although the semantics of such operations are 
not yet clearly defined for the XML query model. Additional information about 
XML benchmarks can be found in Bressan et al.'s XML Management System 
Benchmarks [17]. 

Native XML systems have been compared to XML-enabled systems (relational 
systems that provide an XML interface that allows users to view and query their 
data in XML) with three collections of queries: data-driven, document-driven, and 
navigational queries [18]. Tests confirm that XML-enabled management systems 
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perform better than XML native systems for data-driven queries. However, XML 
native systems outperform XML-enabled ones on document-driven and naviga- 
tional queries. This is not unexpected because enabled systems are tuned to opti- 
mize the execution of relational queries. However, they do not efficiently represent 
nested or linked data. Thus, navigational queries within enabled systems are rather 
slow; whereas native systems are able to exploit the concise representation of data 
in XML. Finally, document queries may use the implicit order of elements within 
the XML file. This ordering is not typically represented in relational databases, 
therefore defining an appropriate representation is a tedious task and negatively 
affects performance. 

The type of system that is most appropriate depends heavily on the types of 
queries expected, the data being integrated, and the tools with which the system 
must interact. Scientific queries exploit all characteristics of XML queries: data, 
navigation, and document. An XML biological information system will need to 
perform well in all these contexts. An XML biological benchmark will be needed 
to evaluate XML biological information systems. 

13.3.4 Text Retrieval 

For many tasks, scientists access their data through a document-based interface. 
Indeed, a large amount of the data consists of textual annotations. Life scientists 
extensively use search engines to access data and navigation to explore the data. 
Unlike database approaches, structured models cannot be used to represent a 
document or many queries over document sets (e.g., given a document, find other 
documents that are similar to it). The evaluation of a textual retrieval engine 
typically relies on the notion of relevance of a document. A document is relevant 
if it satisfies the query. The notion of relevance is subjective because retrieval 
engines typically provide users with a limited query language consisting of Boolean 
expression of keywords or phrases (strings of characters). In such context, the 
query often does not express the user's intent, and thus, the notion of relevance is 
used to capture the level of satisfaction of the user rather than the validation of 
the query. Relevance is considered to have two components: recall and precision. 
Recall is the ratio of the number of relevant documents retrieved by the engine 
to the total number of relevant documents in the entire data set. A recall equal 
to one means all relevant documents were retrieved, whereas a recall of zero 
means no relevant document was retrieved. A recall of one does not guarantee 
the satisfaction of the user; indeed, the engine may have retrieved numerous non- 
relevant documents (noise). 

Precision is the ratio of the number of relevant documents retrieved by the 
engine to the total number of retrieved documents and thus reflects the noise in 
the response. A precision equal to one means all retrieved documents are relevant, 
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whereas a precision of zero means no retrieved document is relevant. Ideally, a 
document would have both a precision and a recall of one, returning exactly the 
set of documents desired. Unfortunately, state-of-the-art text query engines are 
far from that ideal. Currently, recall and precision are inversely related in most 
systems, and a balance is sought to obtain the best overall performance while not 
being overly restrictive. 

Integrating Applications 
System requirements usually include the ability to use sophisticated applications 
to access and analyze scientific data. The more applications that are available, 
the better functionality the system has. However, integrating applications such 
as BLAST may significantly affect the system performance in unanticipated and 
unpredictable ways. For example, a call to blastp against a moderate size data set 
will return a result within seconds, whereas a call to tblastn against a large data set 
may require hours. The evaluation of the performance of the overall integration 
approach must include information about the stand-alone performance of the 
integrated resources. This information, including the context in which optimal 
performance can be obtained, is often poorly documented. This is partially because 
many of the useful analysis tools are developed in academic contexts where little 
effort is made to characterize and advertise their performance. Readers who are 
involved in tool development are invited to better characterize the performance of 
these tools for systems to better integrate them. 

13.4 SUMMARY 

Each of the systems described in this book was designed to address specific user 
needs, and these requirements led to vastly different approaches. These systems 
represent the wide spectrum of tradeoffs that may be made. Ideally, a table or other 
mechanism would summarize their characteristics with respect to the variety of 
parameters presented in Section 13.2 and would allow readers to identify the 
system or approach that best meets their needs quickly. Unfortunately, such a 
comparison is not possible without significantly more insight into, on one hand, 
the users' requirements and, on the other hand, the systems implementation and 
feedback on user satisfaction. In particular, it would require familiarity with the 
environment in which the system was to be used, the users who would be working 
with it, the value of various resources in the environment, and how the system 
would be expected to interact with other tools. Although it would be possible to 
invent example users and evaluate some of the systems with respect to them, this 
would involve vast simplifications and would .be a disservice to systems targeting 
different users. It is safe to say, however, that given the tradeoffs that must be 
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made when developing a system, there is no approach that is obviously better 
than all the others. Instead, each user group could analyze carefully the specific 
requirements corresponding to their needs and use the approach presented in 
this chapter to select the approach and system that best meets them. When the 
requirements are identified, contacting the systems' designers and asking them how 
their approach performs in such context will allow each user team to compile their 
own comparison matrix and select an appropriate approach and system. When 
performing this evaluation, it is important to consider all of the users' requirements 
because focusing on only a few could lead to the selection of a less desirable 
approach. For that purpose, the contact information for each of the presented 
systems is provided in the System Information section. 

While evaluating systems using the metrics proposed in Section 13.2 is some- 
what subjective, when applied consistently, they form a reasonable basis for identi- 
fying the strengths and weaknesses of disparate systems. In addition, their flexible 
definitions allow them to be refined as needed to obtain the proper level of detail 
with respect to a particular evaluation's requirements. For example, if efficiency 
is an important consideration, a more detailed evaluation could be performed, 
resulting in specific information about query efficiency, data storage size, com- 
munication overhead, and data integration overhead. Similarly, metrics can be 
combined if only a high-level overview of a system is desired. Finally, readers 
should feel free to introduce new metrics to capture other properties of systems 
if you determine them to be important to an evaluation. There is nothing sacred 
about this evaluation matrix that can be refined and extended to meet one's needs. 
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Concluding Remarks 

As the first book focusing on management systems for biological data, this material 
is a detailed introduction to the variety of problems and issues facing data integra- 
tion and the presentation of numerous systems. The major issue these systems are 
trying to address is the large number of distributed, semantically disparate data 
sources that need to be combined into a useful and usable system for geneticists 
and biologists to perform their research. This issue is complicated by the variety 
of data formats, inconsistent semantics, and custom interfaces supported by these 
sources~as well as the highly dynamic nature of these characteristics and the data 
themselves. Ideally, a data integration system would provide consistent access to 
all of the data and tools needed by scientists. However, no single system meets this 
ideal for all users. This final section provides a brief summary and a peek into the 
future of bioinformatics. 

SUMMARY 

The introductory chapters establish a terminology shared by computer scientists 
and life scientists. They focus on the different steps in the design of a system and 
highlight the differences between the problems faced by those in bioinformatics 
and other facets of these respective disciplines. Upon first glance, these differences 
may seem insignificant, but understanding them is the first step in understanding 
the realities of the environment in which bioinformatics solutions must work. 
The desire to simplify this environment is common in people starting out in this 
domain, but overcoming it is critical to successfully addressing the problems being 
faced. Many of the challenges in bioinformatics are derived from the inherent 
complexity of the domain, and failure to embrace this results in approaches that, 
while acceptable in theory, are not workable in the real, complex world in which 
bioinformatics solutions must be applied. 

Once a common background has been established, the following chapters 
present several bioinformatics systems that are currently in use. The wide variety 
of systems described in this book provides significant insight into the complexity 
of performing data integration in the rapidly changing domain of genomics. The 
fact that these systems are still evolving indicates that none of these approaches has 
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yet led to an ideal solution for all applications. This is a testament to the difficulty 
of creating a bioinformatics solution that addresses the needs of all users. Most of 
these systems evolved independently, and many began as attempts at addressing 
specific challenges facing scientists in a particular organization. The challenges 
focused on by a given solution are generally the most important problems facing 
the associated organization or its customers. While each system presented here 
has met its original goals, as the scope of its usage evolved, it has encountered new 
challenges. 

As discussed in Chapter 13, evaluating a system requires detailed knowledge 
of the environment in which the system will be deployed. Part of the reason no 
single approach is clearly better than another is that the bioinformatics community 
places conflicting goals on systems. As a simple example, notice that although 
providing a semantically consistent view of the data greatly improves the usability 
of the system, it also places practical limits on the number of data sources to which 
the system can provide access. This is because each data source provides its own 
unique semantics for the data it contains, and an expert is required to perform the 
mapping from these semantics to the global ones. However, the more sources to 
which a system provides access, the more valuable it is in general. As scalability 
and semantic consistency are mutually exclusive goals, a system can excel in only 
one of them, providing at best marginal performance in the other. Whether such a 
system is better than another depends on the users' values. This example illustrates 
only one of the tradeoffs bioinformatics systems strive to meet. Because of these 
conflicting constraints, it is currently impossible for a single system to provide 
the bioinformatics solution that meets every scientist's needs. Although this is a 
discouraging realization, it is not a situation unique to bioinformatics. Indeed, it 
appears to be a characteristic of any rapidly evolving scientific domain, and as 
such, the techniques used by bioinformaticians are more generally applicable than 
typically thought. 

LOOKING TOWARD THE FUTURE 

As one becomes familiar with the problems facing bioinformatics and the ap- 
proaches being pursued to address them, it is easy to become disenchanted. The 
problems are daunting, and there is no clear path that will lead to a unifying solu- 
tion. Some issues, such as query optimization and data caching, are just now being 
investigated seriously in this context. Other issues appear as the result of applying 
existing technology in new ways and the development of new technology. Indeed, 
sometimes it feels as if we are moving in the wrong direction: As it becomes in- 
creasingly easy to distribute data via the Web, the number and heterogeneity of 



data sources containing information relevant to scientists keeps increasing. Unfor- 
tunately, a lack of community standards results in each source publishing its own 
distinct semantics and interfaces. The number of tools available to researchers, and 
their complexity, continues to increase without significant progress at making them 
interoperable. Multimedia data is becoming more common as genomics research 
continues to move onto computers and out of the wet-lab, which causes problems 
for data integration systems that are expecting textual data. Large-scale data are 
also becoming more common as access to powerful computers and related infras- 
tructures increases. This changes the value of bandwidth and requires rethinking 
many assumptions about the underlying data. Grid technology is emerging and 
will likely soon allow data and computation to be spread transparently among a 
large number of machines. How this technology will be used is not entirely clear, 
but it will likely have a significant impact on computational biology. 

While each of these issues raises significant data integration and access chal- 
lenges, they also provide new opportunities to solve existing bioinformatics prob- 
lems and, in turn, to advance the state of genomics research. For example, grid 
technology may be able to minimize the impact of large data sets by moving the 
computation to the place where the data resides. Thus, there is still hope that we 
will achieve the goal of providing scientists with intuitive access to all the relevant 
data they need. 

One of the more promising emerging trends is an effort to define data semantics 
precisely through ontologies. A possible, although not necessarily probable, result 
of this effort is a single unifying ontology that is able to identify accurately the 
information contained in all data sources. Having this global ontology would allow 
mappings between related concepts to be easily identified, and thus would greatly 
reduce the burden placed on integration systems. Unfortunately, this vision may 
take decades to be realized, if it happens at all. The major reason for this is that 
life science is an inherently complex domain, and there is a lot of information that 
is not yet understood. Thus, the ability to correctly define the semantics between 
these complex concepts is severely limited by this lack of comprehension. Because 
of this difficulty, the ontologies currently being developed are generally small and 
define semantic concepts only for a specific sub-community of life science. The 
creation and adoption of these smaller ontologies are likely to occur over the next 
few years. Although a less than ideal solution, these ontologies could be extremely 
useful to bioinformatics by reducing the number of semantic definitions that need 
to be integrated. 

Integrating data from multiple resources also raises challenging issues related 
to data provenance, data ownership, data quality, privacy, and security, which 
will need to be addressed in the short future. Indeed, integrated data is often com- 
posed of several data items, each coming from a different resource. Tracking data 



396 ~ ~  C o n c l u d i n g  Remarks 

provenance is critical to scientific applications as it enables users to know where 
each data item comes from. This knowledge is relevant to data ownership and 
quality. For example, when exploiting data, it is important to give credit to the 
researcher who has generated or annotated the data. In addition, data provenance 
may affect the expected quality of the data (e.g., when they are not curated or vali- 
dated) and thus the way it should be exploited. But if scientific integration systems 
evolve to track down data provenance, they might also enable to reconstitute the 
original datasets, which raises privacy and security issues as scientific discovery 
will need to integrate more and more clinical data. Biological integration systems 
may have to comply with regulations such as the privacy provisions and the stan- 
dards for the security of electronic health information of the U.S. federal law, the 
Health Insurance Portability and Accountability Act of 1996 (HIPAA). 

Which trends will continue and impact the bioinformatics community as a 
whole has yet to be seen. The only thing certain is that bioinformatics will continue 
to be an exciting and evolving discipline for years to come. As comprehensive as we 
have tried to be, this book provides only an introduction to the fascinating world of 
bioinformatics data integration. Furthermore, while the challenges outlined herein 
are daunting, addressing them is only the first step the evolving, multidisciplinary 
field of bioinformatics must take. Once these challenges have been overcome, 
there is still a huge amount of work to be done to use that information effectively 
to understand the mechanics of life. Despite the tremendous amount of work 
still to do, the path is fascinating and the rewards for successfully unraveling the 
mysteries of the genome are unparalleled. We hope that this book has provided 
not just insight into the challenges currently being addressed in bioinformatics, 
but also inspiration to help overcome them. 
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Resources 

Category 

Useful biological resources, databases, organizations, and applications are listed 

in three tables. The tables include resources cited in the book. The acronyms com- 

monly used to refer to the resources are spelled out, and current URLs are provided. 

Additional resources are the Public Catalog of Databases available at INFOBIO- 

GEN ( h t t p . / /www. in fo b io g en . f r / s e rv i ce s /dbca t )  and the Biocatalog available at the 

European Bioinformatics Institute ( h t t p . / / w w w . e b i . a c . u k / b i o c a t ) .  

Databases and URLs 

Comprehensive Data Center: Broad content 

including sequence, structure, function, etc. 

EBI (European Bioinformatics Institute): http.//www.ebi.ac.uk/ 

EMBL (European Molecular Biology Laboratory): 
h ttp-//www, em b l-h ei de l b er g. de/ 

ExPaSy (Expert Protein Analysis SystemmSwiss Institute of 
Bioinformatics): http.//us.expasy.org 

The INFOBIOGEN Deambulum: 
http://www.infobiogen.fr/services/deambulum/english/menu.html 

Institut Pasteur: 
http.//bioweb.pasteur, fr/docs/gendocdb/banques.html 

NCBI (National Center for Biotechnology and Information): 
http://www.ncbi.nlm.nih.gov/ 

TIGR (The Institute of Genome Research): http://www.tigr.org/ 

Whitehead/MIT (Massachusetts Institute of Technology) 
Genome Center: http'//www-genome.wi.mit.edu/ 

A.1 

TABLE 

Biological databases. 
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Category Databases and URLs 

DNA or Protein Sequence 

Genomes: Complete genome sequences and related 

information for specific organisms 

A.1 

TABLE 

Continued. 

DDBJ (DNA Data Bank of Japan): http.//www.ddbj.nig.ac.jp/ 

dbEST (Expressed Sequence Tags Database): 
http'//www.ncbi.nih.gov/db EST 

EMBL (Nucleotide Sequence Database): 
http'//www.ebi.ac.uk/embl/index.html 

GenBank and the NCBI Nucleotide Database: 
http.//www.ncbi.nlm.nih.gov/Genbank 

GenPept (protein database translated from the 
last release of GenBank). 
ftp.//www, i n f o b i o g en. f r/pub /db /g enp ep t/ 
or ftp'//ftp.ncbi.nih.gov/genbank/ 

GSDB (Genome Sequence DataBase): 
http.//wehih.wehi.edu.au/gsdb/gsdb.html 

PIR (Protein Information Resource): 
http.//pir.georgetown.edu/ 

RefSeq (comprehensive integrated non- 
redundant set of sequences): 
http://www.ncbi.nlm.nih.gov/LocusLink/refseq.html 

Swiss-Prot (protein knowledgebase): 
http ://us.expasy. org/sprot/ 

EBI complete genomes: http://www.ebi.ac.uk/genomes/ 

EcoCyc (Genome of Escherichia coli): 
http ://biocy c. org/ecocyc 

FlyBase (Database of Drosophila Genome): 
http.//flybase.bio.indiana.edu/ 

GDB (Genome database): http-//www.gdb.org 

Institut Pasteur complete genomes: http://www.pasteur.fr/ 
actu/presse/com/dossiers/G B genomics/G B intro.html 

MGD (Mouse Genome Database): 
h ttp ://www. in f ormatics.jax, org/ 

NCBI complete genomes: 
h ttp.//www, ncb i. nlm. n ih. g o v/G enomes/index.h tml 

RatMap (Rat Genome Database): http.//ratmap.gen.gu.se 

SGD (Saccharomyces Genome Database): 
h ttp-//genome-www.stanf ord. edu/Sacch arom y ces/ 

UCSC Genome Bioinformatics: http-//genome.ucsc.edu/ 

WormBase (Genome and Biology of C. Elegans): 
h ttp'//www, wormbase, or g/ 
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Category Databases and URLs 

Genetics: Gene mapping, mutations, and diseases 

Gene Expression: Microarray 
and cDNA gene expression 

Structure: Three-dimension structures 
of small molecules, proteins, DNA 

A.1 

TABLE 

Continued. 

AllGenes (predicted human and mouse genes): 
h ttp ://www.all genes, or g 

GeneCards (human genes): http://bioinfo.weizmann.ac.il/cards 

GeneLynx (human genes): http://www.genelynx.org 

Genew (database of approved HUGO symbols): 
h ttp ://www. gene.ucl.ac.uk/nomenclature/ 

GDB (Genome Database): http://gdbwww.gdb.org/gdb/ 

HGMD (Human Gene Mutation Database): 
http ://arch ive.uwcm.ac.uk/uwcm/m g/h gmdO.html 

OMIM (Online Mendelian Inheritance in Man): 
h ttp ://www. ncb i.nlm, nih. g ov/entr ez/query, f c gi ? db= O MIM 

ArrayExpress (microarray data): 
http.//www.ebi.ac.uk/arrayexpress 

BodyMap (expression information about human 
and mouse genes): http://bodymap.ims.u-tokyo.ac.jp/ 

dbEST (Expressed Sequence Tag Database): 
http'//www.ncbi.nlm.nih.gov/db EST/index.html 

GeneX (gene expression database): http://www.ncgr.org/genex 

GEO (Gene Expression Omnibus): 
http'//www.ncbi.nlm.nih.gov/geo/ 

MGED (Microarray Gene Expression Database): 
http.//www.mged.org 

UniGene (partition of GenBank into clusters that 
contain the sequences that represent 
a unique gene): http://www.ncbi.nlm.nih.gov/UniGene/ 

CSD (Cambridge Structural Database): 
http://www.ccdc.cam.ac.uk/prods/csd/csd.html 

HSSP (database of Homology-derived Secondary 
Structure of Proteins): h ttp'//www.hgmp.mrc.ac.uk/ 
Bioinformatics/Databases/hssp-help.html 

NDB (Nucleic Acid Database): 
http.//ndbserver.rutgers.edu/ND B/ndb.html 

PDB (Protein Data Bank): http.//www.rcsb.org/pdb/index.html 
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Category Databases and URLs 

Classification of Protein Family 

and Protein Domains 

Protein Pathway Protein-Protein Interactions 
and Metabolic Pathway 

Proteomics: Proteins, Protein family 

Pharmacogenomics, Pharmacogenetics, Single 
Nucleotide Polymorphism (SNP), Genotyping 

A.1 

TABLE 

Continued. 

Blocks database (protein blocks): http://www.blocks.fhcrc.org/ 

CATH (Protein Structure Classification Database): 
http://www.biochem.ucl.ac.uk/bsm/cath_new/index.html 

InterPro (resource for whole genome analysis): 
http ://www.ebi.ac.uk/interpro/index.html 

Pfam (database of protein families): http.//pfam.wustl.edu/ 

PRINTS (Protein Fingerprint Database): 
http://www.bioinf.man.ac.uk/dbbrowser/PRINTS/ 

ProDom (protein domain families): 
http://prodes.toulouse.inra.fr/prodom/2OO2.1/html/home.php 

PROSITE (database of protein families and domains): 
http://www.expasy, ch/prosite/ 

SCOP (Structure Classification of Proteins): 
http.//scop.mrc-lmb.cam.ac.uk/scop/ 

BIND (Biomolecular Interaction Network Database): 
http ://www. binddb, org/ 

DIP (Database of Interacting Proteins): 
http-//dip.doe-mbi.ucla.edu/ 

EcoCyc (Encyclopedia of E. coli Genes and Metabolism): 
http://biocyc.org/ecocyc 

KEGG (Kyoto Encyclopedia of Genes and Genomes): 
http ://www.genome.ad.jp/kegg/kegg2.html#pathway 

WIT (Metabolic Pathway): http-//wit.mcs.anl.gov/WIT2/ 

AfCS (Alliance for Cellular Signaling): 
http-//cellularsignaling, org/ 

JCSG (Joint Center for Structural Genomics): 
http-//www.jcsg.org/scripts/prod/home.html 

PKR (Protein Kinase Resource): 
http.//p kr.sdsc.edu/html/index.shtml 

ALFRED (Allele Frequency Database): 
http'//alfred.med, yale.edu/alfred/index.asp 

CEPH (Centre d'Etude du Polymorphisme Humain 
genotype database): http-//www.cephb.fr/cephdb/ 
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Category Databases and URLs 

Tissues, Organs, and Organisms 

Literature Reference 

dbSNP (Single Nucleotide Polymorphism Database): 
http,//www.ncbi.nlm.nih.gov/SNP/ 

LocusLink: http.//www.ncbi.nlm.nih.gov/LocusLink 

PharmGKB (Pharmacogenetics Knowledge Base): 
http://pharmgkb.org 

SNP consortium: http.//snp.cshl.org 

BRAID (Brain Image Database): 
http.//braid.rad.jhu.edu/interface.html 

NeuroDB (Neuroscience Federated Database): 
http,//www.npaci.edu/D I CE/Neuro/ 

Visible Human Project: 
http'//www.nlm.nih.gov/research/visib le/visib le_human.html 

Whole Brain Atlas: 
http,//www.med.harvard.edu/AANLIB/home.html 

PubMed (MEDLINE bibliographic database): 
http.//www.ncbi.nlm.nih.gov/entrez/ 

USPTO (US Patent and Trademark Office): 
h ttp.//www, usp to. g ov/ 
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Organization Descriptions 

Human Genome Organization (HUGO) 
Gene Nomenclature Committee (HGNC) 
http.//www.gene.ucl.ac.uk/nomenclature/ 

Gene Ontology Consortium (GO) 
http'//www.geneontology.org 

Plant Ontology Consortium 
http.//p lantontology, org 

Microarray Gene Expression Data Society (MGED) 
http ://www.m ged.org/ 

NBII (National Biological Information 
Infrastructure) 

http.//www.nbii.gov/disciplines/systematics.html 

ITIS (Integrated Taxonomic Information 
System) http'//www.itis.usda.gov/ 

MeSH (Medical Subject Headings) 
h ttp.//www, nlm. nih. gov/mesh/mesh h ome.h tml 

SNOMED (Systematized Nomenclature of Medicine) 
h ttp'//www.snomed, org/ 

International Classification of Diseases, 
Ninth Revision, Clinical Modification (ICD-9-CM) 
http'//www.cdc.gov/nchs/about/otheract/icd9/abticd9.htm 

A.2 

TABLE 

Biological ontology resources. 

HGNC is responsible for the approval of a 
unique symbol for each gene and designates 
descriptions of genes. Aliases for genes are also listed 
in the database. 

GO is to develop ontologies describing the molecular 
function, biological process, and cellular component 
of genes and gene products for eukaryotes. Members 
include genome databases of fly, yeast, mouse, worm, 
and Arabidopsis. 

Produce structured, controlled vocabularies applied 
to plant-based database information. 

The MGED group facilitates the adoption of 
standards for DNA-microarray experiment 
annotation and data representation, 
as well as the introduction of standard experimental 
controls and data normalization methods. 

NBII provides links to taxonomy sites for all 
biological disciplines. 

ITIS provides taxonomic information on plants, ani- 
mals, and microbes of North America and the world. 

National Library of Medicine (NLM) controlled 
vocabulary used for indexing articles, cataloging 
books and other holdings, and searching MESH- 
indexed databases, including MEDLINE. 

SNOMED is recognized globally as a comprehensive, 
precise controlled terminology created for the 
indexing of the entire medical record. 

ICD-9-CM is the official system of assigning codes to 
diagnoses and procedures associated with hospital 
utilization in the United States. It is published by 
the U.S. National Center for Health Statistics. 
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Organization Descriptions 

International Union of Pure and 
AppliedChemistry (IUPAC) 
International Union of Biochemistry and Molecular 
Biology (IUBMB) Nomenclature Committee 
http://www.chem.qmul.ac.uk/iubmb/ 

PharmGKB (Pharmacogenetics Knowledge Base) 
http.//pharmgkb.org/ 

mmCIF (The macromolecular Crystallographic 
Information File): http.//pdb.rutgers.edu/mmcif/or 
http.//www.iucr.ac.uk/iucr-top/cif/index.html 

LocusLink 
h ttp ://www. ncb i. nlm. n ih. g o v/L o cus L ink/. 

RiboWeb 
http://riboweb.stanford.edu/riboweb/login-frozen.html 

ENZYME http-//us.expasy.org/enzyme/ 

IMGT (ImMunoGeneTics information system) 
h ttp ://im gt. cines, fr/ 

IUPAC and IUBMB make recommendations on 
organic, biochemical, and molecular biology 
nomenclature, symbols, and terminology. 

PharmGKB develops an ontology for pharmacogenetics 
and pharmacogenomics. 

mmCIF is sponsored by IUCr (International Union of 
Crystallography) to provide a dictionary for data 
items relevant to macromolecular crystallographic 
experiments. 

LocusLink contains gene-centered resources 
including nomenclature and aliases for genes. 

The RiboWeb provides access to a knowledge base 
containing a standardized representation 
of ribosomal structural information. 

ENZYME is a repository of information relative 
to the nomenclature of enzymes. 

IMGT is a high-quality integrated information 
system specializing in immunoglobulins (IG), 
T-cell receptors (TR), major histocompatibility 
complex (MHC), and related proteins of the immune 
system of human and other vertebrate species. 
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Category Application Names and URLs 

Microarray analysis 

Sequence similarity search 

Multiple sequence alignment 

Analysis 

Sequence folding 

Structure prediction 

MAS (Affymetrix MicroArray Suite): 
http.//www.affymetrix.com/products/software/specific/mas.affx 

ImaGene (BioDiscovery): http'//www.biodiscovery.com/ 

BLAST (Basic Local Alignment Search Tool): 
http.//www.ncbi.nlm.nih.gov/B LAST/blast_overview.html 

FASTA (Sequence similarity and homology search): 
http'//www.ebi.ac.uk/fasta3 3/index.html and 
http.//www.ebi.ac.uk/fasta3 3 /genomes.html 

SMART (Simple Modular Architecture Research Tool): 
h ttp.//sma rt. em b l-h eide l b er g. de/ 

WU-BLAST (Washington University BLAST) 
http.//b last.wustl.edu/b last/READ ME.h tml 

CAP (Contig Assembly Program): http'//fenice.tigem.it/bioprg/interfaces/cap3.html 
ClustalW: http://www-igbmc.u-strasbg.fr/Biolnfo/ClustaIW 
ClustalX: http.//www-igbmc.u-strasbg, fr/B io Info/ClustalX 

LASSAP (LArge Scale Sequence compArison Package), also known as BioFacet: 
http.//www.gene-it.com/index.html 

MEGA: http.//www.megasoftware.net/ 

MultAlin: http-//prodes.toulouse.inra.fr/multalin/multalin.html 

PAUP (Phylogenetic Analysis Using Parsimony): 
http.//paup.csit.fsu.edu/paupfaq/faq.html 

Phylip: http.//evolution.genetics.washington.edu/phytip.html 

TMAP: http.//www.mbb.ki.se/tmap/ 

EMBOSS (European Molecular Biology Open Software Suite): 
http.//www.h gmp.mrc.ac.uk/So ftware/EMB O SS/ 

HMMER (Profile hidden Markov models for biological sequence analysis): 
http.//hmmer, wustl.edu/ 

GeneSpring (Silicon Genetics): 
h ttp.//www.s ilicon genetics, com/c gi/S i G. c gi/P roducts/G eneS prin g/index.sm f 

PSORT: http://psort.nibb.ac.jp/ 

Spotfire: http.//spotfire.com 

StackPACK: h ttp'//www.sanbi.ac.za/D bases.html 

Wise (Genewise): http://www.ebi.ac.uk/Wise2/index.htmI 

Mfold: http.//www.bioinfo.rpi.edu/applications/mfold/ 

NNPREDICT (Protein Secondary Structure Prediction): 
http://www.cmpharm.ucsf.edu/~nomi/nnpredict.html 

A.3 

TABLE 

Biological tools and systems. 
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Category Application Names and URLs 

Pattern recognition 

Retrieval systems 

Database systems 

Partek: http'.//www.partek.com 

BioRS (Biomax): http-//www.biomax.de/index.html 

DBGET/LinkDB: http:www-genome.ad.jp/dbget 

AceDB: http-//www.acedb.org/ 

GUS (Genomics Unified Schema platform): http'//www.gusdb.org 

GIMS (Genome Information Management System): 
h ttp.//www, cs. ma n. u k/im g/gims/ 

Informax: http.//www.informaxinc.com 

MySQL (open source DBMS): http'//www.mysql.com/ 

SeqStore: http://www.accelrys.corn/dstudio/ds_seqstore/ 

Tripos: http.//www.tripos.com/ 



This Page Intentionally Left Blank



Glossary 

AADM The Affymetrix Analysis Data Model. The relational database schema the 
Affymetrix LIMS and MicroDB systems use to store GeneChip expression results. 

aggregation A computation whose result value depends on a stream of input values, 
such as an average, sum, or standard deviation. 

API (application programming interface) This is composed of any set of routines 
generally available for use by programmers to provide portable code. The pro- 
grammer only has to worry about the call and its parameters and not the details 
of implementation, which may vary from system to system. 

ASN1 Abstract Syntax Notation One. This is an ISO standard for open systems 
interconnection. 

automatic summary table A special table created to cache the results of a specific 
query against other tables. Subsequently, when another query is submitted, the 
query processor may be able to deduce that the new query can be rewritten as 
a query against the cached result. Using the pre-computed result in this way can 
have a large performance benefit. The downside is that the automatic summary 
table must be maintained as the underlying tables are updated. 

autonomy of databases Degree of control of the database into an integration 
architecture that includes what transactions are permissible, how it executes trans- 
actions, and so on. In the context of integration of distributed resources, examples 
of integration affecting the autonomy of each resource are tight integration, semi- 
autonomous integration, and total isolation. They respectively characterize a lack 
of control, moderate control, and total control. Autonomy is the second charac- 
terization of integration with distribution. 
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bag A data type that represents a homogeneous collection of objects such that 
the order of appearance of these objects in the collection is unimportant, but the 
number of occurrences is important. Unlike a set, a value may occur multiple times 
in a bag. 

bindjoin A federated join algorithm in which the federated server ships values of 
the join column(s) from one of the tables to the remote data source that stores the 
other table. The remote source searches its table for rows with matching values, 
and returns these to the federated server. 

BLAST The Basic Local Alignment Search Tool. Used to compare a gene or protein 
sequence against other sequences. 

blastn An implementation of BLAST used for nucleotide-nucleotide comparisons. 

blastp An implementation of BLAST used for protein-protein comparisons. 

BLOB Binary Large Object. A data type for representing a long string of binary 
data (e.g., an image or a video) whose internal structure is unknown to the database 
management system. Due to their potential for great size, database systems typi- 
cally manage BLOB data with special techniques to eliminate unnecessary copying 
and allow random access to sub-pieces. Unlike a CLOB, a BLOB is not associated 
with a particular character set or encoding. 

Boolean circuit A family of Boolean circuits is an infinite collection of acyclic 
Boolean circuits made up of AND, OR, and NOT gates. 

box plots An excellent tool for conveying location and variation information in 
data sets, particularly for detecting and illustrating location and variation changes 
between different groups of data. 

browsing The act of accessing information available on the World Wide Web. 
This is typically an interactive process, with a person examining Web pages and 
following links. 

bulk data type Refers to data types that are collections of objects. Examples of 
bulk data types are sets, bags, lists, and arrays. 

CDATA Textual portion of an XML document that is ignored by the parser. 
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cDNA Complementary DNA. DNA copies of the mRNA expressed in a specified 
tissue. 

CDS Coding sequences. 

CGI Common Gateway Interface. 

CLI Call-Level Interface. A general-purpose interface to IBM DB2 that conforms 
to O D B C  2.0 level 2 and ODBC 3.0 level 1, but can be used without an ODBC 
driver. It also supports some ODBC 3.0 level 2 functions, as well as some DB2- 
specific functions. 

CLOB Character Large Object. A data type for representing a long string of char- 
acter data (e.g., a text document or genomic sequence) whose internal structure 
is unknown to the database management system. Due to their potential for great 
size, database systems typically manage CLOB data with special techniques to 
eliminate unnecessary copying and allow random access to sub-pieces. A CLOB 
is associated with a specific character set, and character codes will be translated 
appropriately when it is retrieved. 

CNS tissue Central nervous system tissue. 

co-clustered fragment Gene fragments derived from the same UniGene cluster or 
consensus sequence cluster. 

CPL (Collection Programming Language) A high-level query language based on 
the comprehension syntax and supported by Kleisli. 1 

comparative genomics The study of human genetics by comparisons with model 
organisms such as mice, fruit flies, and the bacterium E. coli. 

complex value data Data whose type system includes not only simple types such 
as strings, and numbers, but also arbitrarily nested sets, lists, bags, records, and 
variants. 

1. L. Wong. "Kleisli: A Functional Query System." Journal of Functional Programming 10, no. 1 
(2000): 19-56. 
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Conceptual Model (CM) An abstraction of the objects represented in an applica- 
tion, as well as their properties and their relationships, that provides a conceptual 
representation of the application. CMs typically capture the class and object struc- 
ture as well as domain-specific relationships of the modeled world. CMs can be 
expressed in a variety of ways such as through entity-relationship diagrams (ER), 
class diagrams in the Unified Modeling Language (UML), or by using formal ap- 
proaches based on first-order predicate logic. 

CORBA Common Object Request Broker Architecture. An OMG standard for an 
architecture and infrastructure that allows computer applications to work together 
over networks. 

CPU Central Processing Unit. 

database (DB) A collection of information organized in such a way that a com- 
puter program can quickly select desired pieces of data (see database management 
system). 

database management system A collection of programs that enables storing, 
accessing, modifying, and extracting information in a database. 

data cleansing (Also called data scrubbing) This is the process of amending or 
removing data in a database that is incorrect, incomplete, improperly formatted, 
or duplicated. See also data curation. 

data curation The process of storing and checking the accuracy of data so they 
remain accessible indefinitely. When applied in the context of multiple data sources, 
this also implies the reconciliation of semantic conflicts that may arise from con- 
flicting information. 

data fusion The process of deriving insight from information acquired from mul- 
tiple sources (sensor, databases, information gathered by human, etc.) of which 
data integration is a key step. The term was first used by the military to correlate 
and analyze information in time and space, to identify and track individual objects 
(equipment and units), to assess the situation, to determine threats, and to detect 
patterns in activity. 

data integration A process that combines data from multiple, possibly heteroge- 
neous and inconsistent, data sources into a single, consistent source. 



data mining Analyzing, exploring, or clustering a data set with statistical tech- 
niques. 

data model Provides the means for specifying particular data structures, for con- 
straining the data associated with these structures, and for manipulating the data 
within a database system. To handle data outside the database system, this tradi- 
tional definition is extended to include a data exchange format, which is a means 
for bringing data outside the database system into it and also for moving data 
inside the database system to the outside. 

data-shipping Within the client/server context, data-shipping consists of transfer- 
ring the data from the client to the server and performing the execution of the 
query at the server. (See query-shipping for an alternate approach.) 

data source Any data repository (e.g., database, flat files). 

data type Classifies a particular type of information. Examples of data types are: 
integer, floating point, number, character, and string. (See bulk data type.) 

data warehouse A collection of data integrated from multiple sources and con- 
tained within a unique system, usually a database. Data needs to be translated 
to a common format, cleansed, and reconciled before being integrated into the 
data warehouse. It constitutes a subject-oriented, integrated, time variant, and 
nonvolatile data repository. 

Datalog A query language that allows users to access and manipulate data con- 
tained in predicates through if-then-else rules. 

DBMS (See database management system.) 

description logics Knowledge representation languages tailored for expressing 
knowledge about concepts and concept hierarchies. 

distributed database systems. A collection of logically interrelated databases, dis- 
tributed at multiple sites and connected by a computer network such that each 
database has autonomous processing capability and participates in the execution 
of queries that are split across multiple sites. Distribution of databases charac- 
terizes the fact that the data are split over several databases. Distribution is the 
second characterization of databases with autonomy. 



G l o s s a r y  412 . . . . . . . . . . . . . . . . . . . . . .  ~ ~  

DNA Deoxyribonucleic acid. A linear nucleic acid polymer composed of four kinds 
of nucleotides: Adenine, Thymine, Guanine, Cytosine. In native form inside the 
nucleus, it is a double-helix of two anti-parallel strands held together by hydrogen 
bonds. DNA is the carrier of genetic information for many species. 

DNA microarray A mechanism for massively parallel gene expression and gene dis- 
covery studies in which probes (or oligonucleotide sequences) with known identity 
are placed on glass or nylon substrates and used to determine complementary bind- 
ing through hybridization. A synonym for this is probe array. 

DNA sequencing The experimental process of determining the nucleotide sequence 
of a region of DNA. This is done by labelling each nucleotide (A, C, G, or T) 
with either a radioactive or fluorescent marker that identifies it. There are several 
methods of applying this technology, each with its advantages and disadvantages. 
For more information, refer to a current textbook. High throughput laboratories 
frequently use automated sequencers, which are capable of rapidly reading large 
numbers of templates. Sometimes the sequences may be generated more quickly 
than they can be characterized. 

domain map (DM) A kind of ontology to denote semantic networks of terms 
and their relationships. A precise meaning can be associated to DMs via a logic 
formalization. DMs are used to express terminological knowledge. 

EDB Extensional database. 

ER model Entity-relationship model. A data model consisting of entity classes and 
relationships traditionally used to describe relational database schema. 

enzyme A biological macromolecule, usually a protein, that acts as a catalyst. 
Enzyme Nomenclature Committee classifies these molecular activities by assigning 
a unique Enzyme Catalogue (EC) number. 

EST sequence Expressed Sequence Tags. Short sequence fragments (<200 base 
pairs) that are known to express collectively in a given tissue or a pool of tissue. 
Clusters of these sub-fragments assembled into consensus sequences act as identi- 
fiers of genes or transcripts expressed in that tissue. 

extensional database (EDB) Refers to (i) the set of tuples (i.e., "facts") stored in 
a database and/or (ii) the relational schema of the tuples/facts which are stored 
directly in a database. 



FDM Functional Data Model. 

federation A collection of semi-autonomous, distributed databases in which each 
database has significant autonomy while still providing the capability to access 
integrated resources in a unified manner. 

First Order logic (FO) is the logic that can only quantify over sets of values. Second- 
order logic can quantify over functions, and higher-order logic can quantify over 
any type of entity. 

foreign key This is a field in a relational table that matches the primary key column 
of another table. The foreign key can be used to cross-reference tables. 

FTP File Transfer Protocol. 

functional genomics The study of genes, their resulting proteins, and the role 
played by the proteins in the body's biochemical processes. 

functional programming languages Programming languages that emphasize a par- 
ticular paradigm of programming technique known as "functional programming." 
In this paradigm, all programs are expressed as mathematical functions and are 
generally free from side effects. Examples of functional programming languages 
are LISP, Haskell, and SML. 

gene An abstract entity that is the fundamental physical and functional unit of 
heredity. A gene is an ordered sequence of nucleotides located in a particular 
position on a particular chromosome that encodes a specific functional product 
(i.e., a protein or RNA molecule). 

GeneChip Affymetrix whole genome arrays or dynamic custom arrays. 

gene expression The process by which a gene's coded information is converted into 
the structures present and operating in the cell. Expressed genes include those that 
are transcribed into mRNA and then translated into protein and those that are 
transcribed into RNA but not translated into protein (e.g., transfer and ribosomal 
RNAs). 

gene fragment An abstract sub-sequence fragment of a representative target tran- 
script (mRNA) from which the individual probes or oligo sequences are derived. 
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Synonyms include composite target sequence, probe set, sequence fragment, and 
target sequence. 

gene product The biochemical material, either RNA or protein, resulting from 
expression of a gene. The amount of gene product is used to measure how active 
a gene is; abnormal amounts can be correlated with disease-causing alleles. 

genome All the genetic material in the chromosomes of a particular organism; its 
size is generally given as its total number of base pairs. 

genome project See Human Genome Initiative. 

genomics The study of genes and their function. 

gene chip microarray technology Development of cDNA microarrays from a large 
number of genes. Used to monitor and measure changes in gene expression for 
each gene represented on the chip. 

global schema A single, unifying, semantically consistent view of data contained 
in multiple, distributed, heterogeneous data sources. 

global-as-view (GAV) An integration approach is global-as-view (GAV) when the 
global schema is expressed with respect to the source schemas (the schemas of the 
integrated sources). Queries asked against the global schema are easily translated 
into source queries by replacing the meaning of each relation and attribute of 
the global schema with its definition in terms of the source schemas. GAV is an 
alternative to LAV. 

grid Grid computing is a form of distributed computing that involves coordinating 
and sharing computing, application, data, storage, or network resources across 
dynamic and geographically dispersed organizations. 

GUI Graphical User Interface. 

heterogeneous databases Used in the context of distributed databases when sys- 
tems differ in some way, such as data representation, query language, or semantics. 

host variable The SQL representation for an application program variable. A 
host variable can be the container for data inserted into or retrieved from the 
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database, or it can represent a query parameter whose value will be supplied by 
the application just prior to execution of the query. 

HTTP Hypertext Transfer Protocol. 

Human Genome Initiative Collective name for several projects begun in 1986 
by the U.S. Department of Energy to create an ordered set of DNA segments 
from known chromosomal locations, to develop new computational methods for 
analyzing genetic map and DNA sequence data, and to develop new techniques 
and instruments for detecting and analyzing DNA. This DOE initiative is now 
known as the Human Genome Program. The joint national effort, led by DOE 
and National Institutes of Health, is now known as the Human Genome Project. 

Human Genome Project (HGP) Formerly titled Human Genome Initiative. 

hybridization The biochemical process by which two complementary, single- 
stranded nucleic acid chains form a stable, double-stranded helix chain. DNA 
microarrays use hybridization reactions to assay target transcripts extracted from 
the samples. 

IDB Intensional database. 

intensional database (IDB) Refers to (i) the set of tuples (i.e., virtual relations) 
in a database, which are defined by means of logic rules (e.g., Datalog formulas 
or SQL "create view" statements) and/or (ii) the relational schema of the virtual 
relations defined by those rules. 

ISA relationship When between two entities, captures the notion of generalization 
The opposite or inverse of generalization is called specialization. If "A" ISA "B", 
then "B" is the more generic concept and A is the specific concept. The most 
significant property of an ISA relationship is that of inheritance. All that is specified 
to be true about the generic concept is also true for the specific concept. That means 
that all attributes, their values, and constraint (rules) are inherited from the more 
generic level concept down to the more specific level concept as are all relationships 
in which the more generic level concept participates. 

ISDK InSilico Discovery Kit describes experimental steps carried out in computers 
the same way an experimental protocol describes the steps carried out in a wet 
laboratory. 



Glossary 416 ~ ~ ~ = ~ ~ ~ ~ . ~ , ~ = = ~  

ISO International Organization for Standardization. An international standards- 
making body. 

JDBC Java DataBase Connectivity. JDBC technology is an application program- 
ming interface (API) that provides cross-database connectivity to a wide range of 
relational database systems from the Java programming language. It also provides 
access to other tabular data sources, such as spreadsheets or flat files. 

K2MDL The K2 mediator definition language, a high-level language that extends 
ODMG's ODL with OQL definitions and variants. 

KEGG Kyoto Encyclopedia of Genes and Genomes. An effort to computerize 
current knowledge of molecular and cellular biology in terms of the information 
pathways that consist of interacting molecules or genes and to provide links from 
the gene catalogs produced by genome sequencing projects. 

known gene Refers to officially approved genes by the model organism nomencla- 
ture committee. For example, HUGO is for humans. 

Kripke structure Modal logics provide a general framework for reasoning about 
what is necessarily or possibly true, in particular when dealing with several "pos- 
sible worlds" that are reachable from one another by a temporal accessibility 
relation. Kripke structures are families of conventional first-order logic structures 
(one for each "possible world"), which may be reachable from one another as 
described by the accesibility relation R. 

LAV See local-as-view. 

LIMS Laboratory Information Management System. Software that helps manage 
the workflow and data associated with a laboratory. 

link-driven federation of databases This type of federation allows a set of data 
sources to be browsed by a user who asks a single retrieval query and then explores 
the output by browsing from one source to the other via hyperlinks. An example 
of a link-driven federation is SRS. 

LISP This is a programming language invented by John McCarthy in the late 1950s 
as a formalism for reasoning about the use of recursion equations as a model for 
computation. 
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list A data type that represents a homogeneous collection of objects such that both 
the order of appearance and the number of occurrences of objects in the collection 
are important. 

local-as-view (LAV) An integration approach is local-as-view when the source 
schemas are expressed by means of the global schema. Queries asked against 
the global schema are translated into source queries by replacing the sub-query- 
defining schema components of source schemas. An alternative approach to LAV 
is global-as-view. 

LOGSPACE The class of problems solvable in deterministic logarithmic space. 

materialized query table See automatic summary table. 

materialized view The cached result of a query against a database. The query can 
restructure or be intended to load data into a data warehouse. (See also automatic 
summary table.) 

mediator A middleware component of a database integration infrastructure that 
translates data from fully autonomous distributed heterogeneous data sources 
to a semantically consistent representation. Mediators do not assume that in- 
tegrated sources will all be relational databases; instead, they can be various 
database systems (relational, object-relational, object, XMLetc.), flat files, and 
so on. 

MGED The Microarray Gene Expression Data society. An international organi- 
zation for facilitating the sharing of microarray data from functional genomics 
and proteomics experiments. 

MIAME Minimum information about a microarray experiment. This is a set of 
guidelines developed by the MGED Society to outline the minimum information 
required to unambiguously interpret microarray data and subsequently to allow 
independent verification of this data at a later stage if required. 

microarray See D NA microarray. 

middleware Connectivity software that consists of a set of enabling services that 
allow multiple processes running on one or more machines to interact across a 
network. 
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ML (meta language) A functional programming language. 

model-based mediation (MBM) A wrapper/mediator approach and architecture 
for information integration in which representations of domain semantics (do- 
main maps, process maps, and semantic integrity constraints) are used to facilitate 
queries across sources. 

mRNA A single-stranded ribonucleic acid molecule derived from the DNA tem- 
plate of a gene when the gene is transcribed during the gene expression process, 
which takes place in the nucleus of the cell. mRNA specifies the order of the amino 
acids to be coded in a protein by the translation process which takes place inside 
the cytoplasm of cell. Its role is to transmit instructions from DNA sequences in 
the nucleus to the protein-making machinery in the cytoplasm of the cell. 

multi-database A system consisting of fully autonomous distributed databases. The 
integration component is in charge of providing the user with a query language 
to query integrated resources, executing the query by collecting needed data from 
each integrated resource, and returning the result to the user. 

non-materialized view The result of a query that is not cached and restructure a 
database. The query that defines the non-materialized view, usually is stored as a 
functional definition of the data contained within it, and it is this function that is 
used to recreate the view dynamically on demand. 

NP (NPTIME) The set of problems solvable in non-deterministic polynomial time 
that cannot be solved deterministically in polynomial time. 

NP-complete A set of problems in NP such that any NP problem reduces to it. 

NRC Nested Relational Calculus. 

object-oriented model An approach to programming and data storage in which 
objects are the primary concepts. In this approach, data and functionality are 
tightly coupled. Methods are associated with an object and are the only way to 
manipulate or access the data contained within that object. This approach also 
makes use of concepts such as object inheritance, which may not be available in 
other models. 

Object Query Language (OQL) A query language that allows users to access and 
manipulate data contained in object-oriented databases such as those formalized 
by the ODMG. 
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ODBC Open DataBase Connectivity. A widely accepted application programming 
interface for database access. It is based on the call-level interface specifications 
from X/Open and ISO/IEC for database APIs, and SQL is its database access 
language. 

ODL Object Definition Language. A standard for object definition specified by 
the ODMG. 

ODMG Object Data Management Group. A standard-making body for object- 
oriented databases. 

OIL (Ontology Inference Layer) A proposal for a Web-based representation and 
inference layer for ontologies, which combines the widely used modeling primitives 
from frame-based languages with the formal semantics and reasoning services 
provided by description logics. 

OLAP (on-line analytical processing) OLAP transforms raw data so that it reflects 
the real dimensionality of the enterprise as understood by the user. 

OMG Object Management Group. A standard-setting body focused on developing 
standards for interoperable enterprise applications. 

one-world/multiple-world scenarios Here "world" means a coherent fragment of 
an application domain (i.e., classes of objects and their relationships, that naturally 
belong together and form a coherent domain, and where the relationships among 
the objects and classes is evident). Thus, a one-world mediation scenario can be 
solved without additional cross-world knowledge, while a multiple-world scenario 
often requires specialized knowledge to bridge semantic gaps. 

ontology A description of concepts and relationships that exist among the concepts 
for a particular domain of knowledge. In the world of structured information and 
databases, ontologies in life science provide controlled vocabularies for terminol- 
ogy as well as specifying object classes, relations, and functions. 

OQL Object Query Language. A standard for querying object-oriented databases 
specified by the ODMG. 

primary key Primary key of a relational table uniquely identifies each record in the 
table. It can either be a normal attribute that is guaranteed to be unique (such as 
a Social Security number in a table with no more than one record per person), or 
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it can be generated by the DBMS (such as a globally unique identifier, or GUID, 
in Microsoft SQL Server). 

probe The individual 25mer sub-sequences that are tiled on a microarray. These 
are derived from the gene fragments that collectively detect the target transcript. 
Synonyms used are oligonucleotide sequence and target sequence. 

process map (PM) A kind of ontology used in model-based mediation to describe 
semantic networks of procedural knowledge (i.e., the processes of a domain and 
how they influence and depend on each other). (See also domain maps.) 

proteome Proteins expressed by a cell or organ at a particular time and under 
specific conditions. 

proteomics The study of the full set of proteins encoded by a genome. 

pharmacogenomics The study of the interaction of an individual's genetic makeup 
and response to a drug. 

P (PTIME) The class of problems solvable in deterministic polynomial time. 

query A program written in a database query language for retrieving and trans- 
forming information in a database. 

querying Accessing and manipulating a data source using a query language. 

query language A language that enables users to access and manipulate data, usu- 
ally stored within a database management system. Examples of query languages 
are the relational algebra, the Structural Query Language (SQL), the database 
logic (Datalog), the Object Query Language (OQL), and XQuery. 

query-shipping In the client/server context, query-shipping consists of partially or 
completely performing a query at the client site and sending only the results to the 
server. (See data-shipping for an alternate approach.) 

RDF The Resource Description Framework (RDF) integrates a variety of applica- 
tions including library catalogs and World Wide Web directories; syndication and 
aggregation of news, software, and content; and personal collections of music, 
photos, and events using XML as an interchange syntax. The RDF specifications 



provide a lightweight ontology system to support the exchange of knowledge on 
the Web. 

record A data type that represents an object comprising several data fields. Each 
data field has a name and a value. 

relational algebra A query language that allows users to access and manipulate data 
contained in relations with algebraic operators: union, intersection, difference, 
selection, projection, Cartesian product, join, and renaming. 

relational modelThe standard data model used in commercial database manage- 
ment systems. This data model is based on the relational algebra and presents data 
as a collection of tables. Each table represents a complex data type, and each col- 
umn represents an attribute. Each row in a table contains an instance of that type. 

RNA Ribonucleic acid. 

schema The physical data representation in a database system. It characterizes the 
way the data is organized in the system (e.g., tables, relations, classes, entities, 
concepts, etc.). 

schema integration The process of mapping source schemas to a global, integrated 
schema. It consists in (1) identifying the components of a database that are related 
to one another, (2) selecting the best representation for the global schema, and (3) 
mapping and integrating the components. 

searching Accessing a data source through a phrase (string of characters, keyword, 
DNA sequence, etc.) or a Boolean expression of phrases. The output is the set of 
strings (documents, sequences, etc.) that are similar to the given phrase. 

semantic mediation. See model-based mediation. 

Semantic Web This is a collaborative effort led by the W3C aiming to represent 
data on the World Wide Web. It is based on the Resource Description Framework 
(RDF), which integrates a variety of applications using XML for syntax and URIs 
for naming. 

set A data type that represents a homogeneous collection of objects such that 
the order of appearance and the number of occurrences of these objects in the 
collection are unimportant. 
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SGML Standard Generalized Markup Language. 

Skolem functions Or more precisely, Skolem function symbols (after Albert 
Thoralf Skolem, 1987-1963) are used to create symbolic names when eliminating 
existential quantifiers in first-order logic statements. For example the formula: 

YP person(P) =~ 3M person(M) A mother(P,M) 

states that each person P has a mother M. One can obtain a formula that is equiv- 
alent with respect to satisfiability by replacing the existential quantifier by a new 
unary function symbol f_m(X) denoting the mother of X: 

YP person(P) =~ person(f_m(P))A mother(P, f_m(P)) 

In general, a Skolem function depends on those universal quantifiers in whose 
scope it occurs (here: YP). 

SML Standard Markup Language. A programming language based on the func- 
tional programming paradigm. In this paradigm, all programs are expressed as 
mathematical functions and are generally free from side effects. 

SNP Single nucleotide polymorphism. 

SOAP The Simple Object Access Protocol (SOAP) Version 1.2 provides the defini- 
tion of the XML-based information which can be used for exchanging structured 
and typed information between peers in a decentralized, distributed environment. 

sSQL Simplified SQL. An SQL-like query language supported by Kleisli. It ex- 
tends SQL to the nested relational data model and to multiple, heterogeneous, 
distributed data sources. 

stored procedure A piece of application code, typically including one or more 
database accesses, that is invoked by the client-side portion of a database applica- 
tion but is executed on the database server. Stored procedures typically are used 
to reduce client-server communication when multiple accesses to the database are 
required between interactions with the user. 

Structured Query Language (SQL) The standard query language for expressing 
queries and transformation on relational database management systems. It allows 
access and manipulation of data with select-from-where statements. 



systems biology A new field in biology that is attempting to develop a system-level 
understanding of biological systems. System-level understanding requires under- 
standing the structures and behaviors of systems as a whole, as well as how to 
control and design them. 

table expression A query language construct that represents data whose value is a 
table, rather than a scalar value or row. Examples include a reference to a database 
table, the result of a table function, and a subquery. 

target sequence See gene fragment. 

target transcript. See mRNA. 

TC ~ This is the class of those languages recognized by polynomial-size, bouded- 
depth, unbounded fan-in (e.g., maximum number of inputs) Boolean circuits aug- 
mented by threshold gates (i.e., unbounded fan-in gates that output i if and only 
if more than half of their outputs are non-zero). 

transcription The process of synthesizing mRNA from a sequence of DNA (a gene) 
template. 

transcriptome The full complement of activated genes, mRNAs, or transcripts in 
a particular tissue at a particular time. 

translation The process by which the genetic code carried by mRNA directs the 
synthesis of proteins from amino acids. 

UML (Unified Modeling Language) The industry-standard language for specify- 
ing, visualizing, constructing, and documenting the artifacts of software systems. 

UMLS Unified Medical Language System. 

URI Uniform Resource Identifiers (also known as URLs). 

URL Uniform Resource Locators (also known as URIs) are short strings that 
identify resources in the Web: documents, images, downloadable files, services, 
electronic mailboxes, and other resources. They make resources available under a 
variety of naming schemes and access methods such as HTTP, FTP, and Internet 
mail addressable in the same simple way. 

variant A data type representing an object that is one of several types. Variant 
types enables to consider data of different types within the same composed type. 
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view A structured presentation of the data contained within a database. The de- 
fault view of data is the view of the data as defined by the global schema. However, 
alternative views (e.g., data summaries) may be presented to provide additional 
insight into the data. 

view integration A virtual integration of multiple data sources. 

XA An industry-standard interface for transaction management that is based on 
the X/Open specification. XA allows multiple compliant data managers to cooper- 
ate in a single transaction and ensures that all updates in the transaction are either 
committed or rolled back as a group, regardless of which data manager made each 
change. 

XML Extensible Markup Language. A simple, very flexible text format derived 
from SGML that is a standard format for structured documents and data on the 
World Wide Web. 

XQuery A standard query language that allows users to access and manipulate 
data contained in XML documents. 

W3C The World Wide Web (WWW) Consortium. 

warehouse See data warehouse. 

workflow Workflows are used in business applications to assess, analyze, model, 
define, and implement the core business processes of an organization (or other busi- 
ness entity). A workflow approach automates the business procedures where docu- 
ments, information, or tasks are passed between participants according to a defined 
set of rules to achieve, or contribute to, an overall business goal. In the context of 
scientific applications, a workflow approach may address overall collaborative is- 
sues among scientists, as well as the physical integration of scientific data and tools. 

wrapper A wrapper is generally used within a mediator-wrapper architecture for 
integrating multiple data sources. Each data source typically is accessed through an 
existing interface program. However, the mediator program is unable to commu- 
nicate directly with this existing interface program, often because of some input- 
output format incompatibility. A wrapper is a program that handles this incom- 
patibility so the mediator program can communicate with the interface program. 
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Chapter 5 SRS 

Name and Version of System 

Status of Development and 
Maintenance 

Contact 

SRS (Sequence Retrieval System), version 7.0. 
(Additional information is available at 
http.//www.lionbioscience.com/solutions/products/srs. ) 
SRS is a commercial system and is being further developed 
by LION bioscience with 2 major releases/year and around 
four maintenance releases/year. 
SRS is available to academics free of charge. 

srs@lionbioscience.com 

Chapter 6 Kleisli 

Name and Version of System 

Status of Development 
and Maintenance 

Contact Person 

discoveryHub (version 5) 
Available for Solaris, Linux, and Windows platforms. 

Kleisli is being developed, maintained, and commercialized by 
geneticXchange Inc. 
Academic licenses are available (e.g., Stanford University is 
an academic customer). 

Brian Donnelly 
GeneticXchange Inc. 
713 Santa Cruz Avenue 
Menlo Park, California 94025-4519, USA 
Tel: +1 (650) 321-9573 
Email: info@geneticxchange.com 
URL: http://www.geneticxchange.com 
European Operations: 
Tel: +44 (0)1296 660348 
Email: infoeurope@geneticxchange.com 

Asia-Pacific Operations: 
Tel: +61 (0)2 6281 7655 
Email: infoapac@geneticxchange.com 
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Chapter 7 TAMBIS 

Name and Version of System 

Status of Development and 
Maintenance 

Contact 

TAMBIS 0.96 
A demonstrational Java applet and video examples are 
publicly accessible. 
(Additional information is available at 
http://imgproj.cs.man.ac.uk/tambis/index.html. ) 

TAMBIS is a public system developed at the University 
of Manchester in the UK with the support of the Bioinformatics 
programme of the British Biotechnology and Biological 
Sciences Research Council (BBSRC) in partnership with the 
Engineering and Physical Sciences Research Council (EPSRC) 
and Zeneca Pharmaceuticals. 
TAMBIS is no longer maintained. 
An academic license may be obtained. 

tambis-help@cs.man.ac.uk 

Chapter 8 K2 

Name and Version of System 

Status of Development and 
Maintenance 

Contact Person 

K2 0.5 alpha 
K2 is implemented in pure Java, under JDK 1.2. It is provided 
as a .jar file, about 850 K, and requires ORO's Perl module 
for doing regular expression matching and JGL for handling 
collections. Its OQL/ODL implementation is based on the 
ODMG 2.0 specification, with some additions, and a few 
portions that are not yet implemented. 
(Additional information is available at http://db.cis.upenn.edu/K2/.) 

K2/KLEISLI was developed at the University of Pennsylvania 
and is currently maintained by Scott Harker. 
Academic licenses are available. 

Dr. Val Tannen 
Department of Computer and Information Science 
University of Pennsylvania 
200 South 33rd Street 
Philadelphia, Pennsylvania 19104-6389, USA 
Tel: +1 (215) 898-2665 
FAX: +1 (215) 898-0587 
Email: val@cis.upenn.edu 
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Chapter 9 P/FDM Mediator 

Name and Version of System 

Status of Development and 
Maintenance 

Contact Person 

P/FDM Mediator 
(Additional information is available at 
http://www.csd.abdn.ac.uk/~gjlk/mediator/. ) 
The P/FDM Mediator, described in Chapter 9, is a research 
prototype developed with support from the British 
Biotechnology and Biological Sciences Research Council 
(BBSRC) in partnership with the Engineering and Physical 
Sciences Research Council (EPSRC). This system is not 
currently developed or maintained. 

Dr. Graham J. L. Kemp 
Department of Computing Science, 
Chalmers University of Technology 
SE-412 96, G6teborg, Sweden 
Tel: (+46) 31-772-5411 
FAX: (+46) 31-165655 
Email: kemp@cs.chalmers.se 
URL: http://www.cs.chalmers.se/~kemp/ 

Chapter 10 GeneExpress 

Name and Version of System 

Status of Development and 
Maintenance 

Contact Person 

GX Software System 1.4.2, Genesis 1.1 
(both as of November 2002) 
(Additional information is available at 
http://www.genelogic.com/products.cfm. ) 
GX is a commercial system developed at Gene Logic Inc. 
Continuous maintenance and software upgrades are provided. 
The next major release: GX 2.0/Genesis 2.0 is planned 
for summer 2003. 
Academic licenses are available. 

Dr. Victor M. Markowitz 
Gene Logic, Inc. 
2001 Center Street 
Berkeley, California 94704, USA 
Tel: +(510) 981-3141 
URL: http'//www.genelogic.com/products.cfm 
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Chapter 11 DiscoveryLink 

Name and Version of System 

Status of Development and 

Maintenance 

Contact 

DiscoveryLink is an IBM services offering based on 
DB2 UDB V7.2 and higher version numbers. 
(Additional information is available at 

http-//www.ibm.com/discoverylink. ) 
DB2 UDB is supported via IBM's normal customer support 

channels. Additionally, customers may contract for services 
to install, set up, configure, tune, and/or maintain the system, 
as well as to write new wrappers. These services are optional. 
DiscoveryLink is available through IBM's scholars program, 

which offers free licenses for qualifying academic purposes. 

See http://www-3.ibm.com/sofware.info/university/ 
for more information. 

Is@us.ibm.corn, or visit the Web site at 

http-//www.ibm.com/discoverylink 

Chapter 12 KIND 

Name and Version of System 

Status of Development and 
Maintenance 

KIND Mediator (Knowledge-Based Integration of 

Neuroscience Data) version 1.01 
(Additional information is available at http://www.nbirn.net.) 
KIND is under development at the University of California, 
San Diego, for the Biomedical Informatics Research 
Network (BIRN), an initiative of the National Center for 
Research Resources (NCRR), a component of the National 
Institutes of Health (NIH). 
Earlier prototypes (KIND versions 0.X) have been demonstrated 
at various conferences, including the Human Brain 
Project meetings 2000 and 2001. 

A demonstration is available at 

http-//www.npaci.edu/DICE/Neuro/ but is no longer 

actively maintained. 
Currently the system is completely redesigned and maintained. 

The system will be public but access is currently limited to the 

BIRN research group. In the future, a license may be available. 
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Chapter 12 KIND 

Contact People Dr. Bertram Ludfischer 
San Diego Supercomputer Center 
University of California, San Diego 
9500 Gilman Drive, MC 0505 

La Jolla, California 92093-0505, USA 
Tel: +1 (858) 822-0864 
FAX: +1 (858) 534-5113 
Email: ludaesch@sdsc.edu 

Dr. Amarnath Gupta 
San Diego Supercomputer Center 
University of California, San Diego 
9500 Gilman Drive 
La Jolla, California 92093, USA 
Tel: +1 (858) 822-0994 
FAX: +1 (858) 534-5113 
Email: gupta@sdsc.edu 
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architecture 
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361 
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probe, 280 
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Sequence Retrieval System, 
141-143 

automatic summary table, 407 
autonomous data source, 18 
autonomy of databases, 407 

~ B 

bag, 408 
Basic Local Alignment Search Tool 

(BLAST), 25, 137-138, 408 
DiscoveryLink and, 311, 313-316 
FASTA and, 146 
functionality of, 383 
integration of, 45-46 
querying vs. browsing, 47 

batch queue, 139 
benchmarks in performance evaluation, 

374-375 
bi-valued semantics, 90 
Binary Large Object (BLOB), 408 
bindjoin, 408 
bioinformatics 

biological data integration, 4-7 
definition of, 3 
design of system, 75-101. See also 

design of biological information 
system 

future of, 394-396 

problem and scope of, 2-4 
system development, 7-10 

biological data, nature of, 15-17 
biological data integration, 7-10 
biological database, Kleisli query system 

and, 165-166 
biological ontology, 216-217 
biological resource, 397-405 

query processing and, 92-93 
biological sample data space, 278-279 
biological tool, legacy, 79-80 
biology 

fusion with information science, 2-3 
systems, 421 

BLAST. See Basic Local Alignment Search 
Tool 

blastn, 408 
blastp, 408 
BLOB. See Binary Large Object 
Boolean circuit, 408 
Boolean query, 24 
BottomUpOnce strategy, 172 
box plot, 408 
browsing 

definition of, 408 
design of, 89-90 
example of, 50-52 
querying vs., 46-48 
scientific objects, 100-101 
semantic, in model-based mediation, 

344 
strengths and weaknesses of, 61-62 

bulk data type, 408 

~ C 

calcium channel protein, example using, 
319-322 

Call-Level Interface (CLI), 409 
canned query, 139 
capability, source, 93 
capturing, relational schema, 125-126 
capturing process knowledge, 340-341 
CDATA, 408 
cDNA, 409 
CDS, 409 
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cell averaging algorithm, 280 
Cell-Centered Database, 345-347, 

362-364 
CGI, 409 
challenges of information integration, 

11-31 
data integration, 21-24 
meta-data specification, 24-25 
ontology, 27-30 
provenance and accuracy, 25-27 
Web presentations, 30-31 

Character Large Object (CLOB), 409 
CLI. See Call-Level Interface 
CLOB. See Character Large Object 
CLUSTAL, 137-138 
clustering technique, 13 
CM. See Conceptual Model 
CNS tissue, 409 
co-clustered fragment, 409 
code 

Icarus, 113-115 
Perl, 167, 168 

code generator, 260 
Collection Programming Language 

(CPL) 
definition of, 409 
DiscoveryLink and, 308 
K2 system and, 228 
P/FDM mediator and, 267 
query processor and, 205 

combining old and new data, 68 
Common Object Request Broker 

Architecture (CORBA), 22, 91, 
140, 141 

definition of, 410 
TAMBIS and, 214-215 

comparative genomics, 409 
compensation in query optimization, 

317-318 
compilation of domain maps, 354-355 
compiler 

condition, 260 
execution plan, in KIND model-based 

mediator, 362 
complex DTDs, 121 
complex multiple-world scenario, 

336-337 
complex objects in Sequence Retrieval 

System, 134 
complex value data, 233, 409 
composite structure, links to create, 136 
composition, view, 68 
comprehension syntax-based language, 

151 
Comprehensive Data Center, 397 
computational analysis tool, 19 
concept 

definition of, 190 
parameterized, 356-357 
recursive, 356 
restricting of, 200-201 
role as, 353 
in system design, 85-86 

concept description, query as, 197-202 

concept integration, 4-5 
concept overloading, 5 
Conceptual Model (CM), 410 
conceptual schema, 44, 255 
condition compiler, 260 
consortium, Gene Ontology, 29 
construction, of links, 131-132 
context-sensitive optimizations, 171-174 
contextual references, in model-based 

mediation, 349 
contextualization, in model-based 

mediation, 344, 350-351 
controlled vocabulary, 40 
CORBA. See Common Object Request 

Broker Architecture 
cost model in performance evaluation, 

372-374 
cost of query processing, 96-97 

DiscoveryLink and, 318, 322-326 
coverage of information sources, 92 
CPL. See Collection Programming 

Language 
CPL2Perl, 176-179 
CPU, 410 
creating wrapper in DiscoveryLink 

registration, 313 
criterion, 193 
curated database, 26 
curated gene data source, simple, 37-38 
curation, data, definition of, 410 

Daplex query language 
capabilities of, 264-265 
example using, 261,262, 264 
functional data model and, 252, 253 

data 
model, in K2 information integration 

system, 232-235 
multimedia, 99-100 
standardization involving, 282 

data cleansing, 410 
data curation, 410 
data dictionary, 22 
data distribution, in system evaluation, 

386-387 
data-driven integration, 91-92 
data driver 

decoupled, 242 
integrated, 241 

data exchange 
for integration of third-party gene 

expression data, 291-293 
standards for, 282 

data federation, use case, 68-69 
data format, updating of, 6 
data fusion, 82, 410 
data integration. See Integration, data 
data loading, 296-297 
data management, 35-69 

basics, 36-39 
gene expression, 277-299. See also 

gene expression data management 

relational model, 41-44 
retrieving genes, 38-39 
semi-structured text files, 40--41 
simple curated gene data source, 37-38 
spreadsheets, 39-40 
traditional, 41-44 
transforming of database structure, 44 

data mapping, semantic, 293-296 
data mining, 87-89, 411 
data model, 411 

in K2 information integration system, 
232-235 

non-relational, 64 
relational, 41-44 

strengths and weaknesses of, 64 
data organization, traditional, 81 
data provenance, 25-27 
data provider in model-based mediation, 

343 
data replication approach, 250-251 
data repository, 4 
data-shipping, 411 
data source 

characteristics of, 17-19 
definition of, 147, 411 
DiscoveryLink registration and, 314 
gene expression data management and, 

290 
in K2 information integration system, 

240-242 
Kleisli query system and, 165-167 
mediator and, 349-351 
P/FDM mediator and, 265-266 
simple curated gene, 37-38 
Web, 65-67 

data space, gene expression, 278-281 
biological sample, 278-279 
gene annotation, 279 
gene expression measurement, 

279-281 
data transformation, 5 
data type, 411 
data warehouse. See Warehousing 
databank 

definition of, 112 
relational, viewing entry from, 

128-129 
XML, loading from, 135 

Databank, in Sequence Retrieval System, 
109-116 

database 
autonomy of, 407 
biologic, Kleisli query system and, 

165-166 
cell-centered, 362-364 
definition of, 36, 112, 410 
Expressed Sequence Tag, 319 
flat files vs., 78 
heterogeneous, definition of, 414 
link-driven federation of, 415-416 
number of, 4 
patent, Kleisli query system and, 164 
relational, query performance to, 128 
virtual, in DiscoveryLink, 305 
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database management, traditional, 80-81 
database management system (DBMS), 

36 
definition of, 411 
relational, 21-22 

database structure, transforming, 44 
database system, 405 
Datalog, 411 
DB2 DataJoiner, 306 
DCOM. See Microsoft Distributed 

Component Object Model 
DBMS. See database management system 
DDL statement, 313-314 
declarative access, procedural access vs., 

49 
declarative query language, 63 
decomposition, query, 68 
decoupled data driver, 242 
definition 

integrated view, 345 
intensional, 348-349 

delivery pattern in query processing, 93 
Department of Energy unanswerable 

query challenge, 226, 228, 229, 
375-376 

deployment issues in GeneExpress 
system, 283-284 

description, concept, query as, 197-202 
description logic ontology, 194 
description logics, 411 
design of biological information system, 

75-101 
browsing, 89-90 
concepts and ontologies, 85-86 
data fusion, 82 
engineering vs. experimental science, 

76-77 

fully structured vs. semi-structured, 
82-84 

generic system vs. query-driven, 77-78 

legacy data and tools, 78-80 
queries, 86-98. See also Query 
scientific object identity, 84-85 
searching, 87-89 
tool-driven vs. data-driven, 91-92 
traditional database management, 

80-81 
visualization, 98-101 

development process, 9 
dictionary 

data, 22 
in K2 system, 233 

difference operation, 42 
discovery process, life sciences, 12-14 
discoveryHub, efficiency of, 377 

DiscoveryLink, 24, 55-58,  303-331 

approach, 306-316 
architecture, 309-312 
registration, 313-316 

ease of use, scalability, and 
performance of, 327-329 

efficiency of, 377 

functionality of, 383 
Kleisli query system and, 181-182 

materialized vs. non-materialized 
approach and, 386 

query processing in, 316-326 
determining costs, 322-326 
example of, 319-322 
optimization and, 317-319 

system information for, 428 
distributed data, 45 
distributed database systems, 411 
distributed integration approach, 22 
distributed object technology, 91 
distribution, data, in system evaluation, 

386-387 
diversity, 15-16, 19-20 
DNA, definition of, 412 
DNA microarray, 412 
DNA sequence, resources for, 397-398 

DNA sequencing, 412 
domain, constantly changing, 80 
domain map, 335 

definition of, 412 
for model-based mediator system, 

352-357 
compilation of, 354-355 
definition of, 352-353 
deriving role hierarchy, 355-356 
as logic rules, 354-355 
parameterized role and concepts, 

356-357 
recursive concepts, 356 
reified roles as concepts, 353 
remarks, 355 
role hierarchy, 354 

domain semantics, 337 
domain-specific benchmark, 374 
driver 

decoupled data, 242 
integrated data, 241 

DTD file, complex, 121 
DTDGenerator, 120-121 

EBI. See European Bioinformatics 
Institute 

EcoCyc, 216 
efficiency 

as implementation criterion, 377-378 

as user criterion, 382 
elaboration, process, 358-359 
elaboration identifier, 358 
EMBOSS, 138 
Empty syntax, XML and, 118-119 
end user in model-based mediation, 344 
engineering 

experimental science vs., 76-77 

knowledge, 353 
entity, general, 119-120 
Entrez interface, 88-89 
entry ID, hub table as, 126 
environment, for life science discovery, 

14-15 
ENZYME, 403 
enzyme, definition of, 412 

ER model, 412 
error 

propagation of, 26 
in spreadsheet, 40 

EST sequence, definition of, 412 
European Bioinformatics Institute (EBI), 

91 
evaluation, query, 95, 96 
evaluation matrix, 372 
evaluation of data management system, 

9-10, 371-390 
implementation criteria for, 376-381 

efficiency, 377-378 

extensibility, 378-379 
functionality, 379 
scalability, 379-380 
understandability, 380 
usability, 381 

performance model for, 371-376 
benchmarks, 374-375 
cost model, 372-374 
evaluation matrix, 372 

tradeoffs in, 385-389 
data distribution and heterogeneity, 

386-387 
integrating applications, 389 
materialized vs. non-materialized 

approach, 385-386 
semi-structured vs. fully structured 

data, 387-388 
user criteria for, 382-385 

efficiency, 382 
extensibility, 382-383 
functionality, 383 
scalability, 383 
understandability, 384 
usability, 384-385 

evolution biology, 12 
Excel, 39-40 

exchange format 
Kleisli, 156, 157 
self-describing, 156 
standards for, 282 
for third-party gene expression data 

integration, 291-293 
execution plan compiler in KIND 

model-based mediator, 362 
experimental science, engineering vs., 

76-77 

explorer window in TAMBIS, 195-197 
exporter in P/FDM mediator, 251 
exporting from SRS to XML, 136-137 
Expressed Sequence Tag database, 319 
expression 

shorthand, 119-120 
table, 421 

expression profile, 13 
extensibility 

as implementation criterion, 378-379 
as user criterion, 382-383 

extensible markup language (XML), 
43-44 

for biological Web services, 30-31 
browsing and, 90 
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database integration into Sequence 

Retrieval System, 116-124 
challenge of, 122-124 
procedure for, 120-121 
support features, 121-122 
uniqueness of, 118-120 

definition of, 423 
exporting objects from SRS, 136-137 
loading from, 135 
navigational capabilities of, 90 
semi-structured vs. fully structured 

data and, 387-388 
Sequence Retrieval System and, 110, 

116-124 
TAMBIS and, 215 
wrapper, 312 
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Feature table of GenBank, 159 
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definition of, 412 
DiscoveryLink based on, 306 
example of, 54-58 
link-driven, 415-416 
P/FDM mediator and, 249-272 

alternative architectures for 
integration, 250-252 

analysis, 266-272 
data sources, 265-266 
example of, 261-264 
functional data model, 252-254 
mediator architecture, 257-261 
query capabilities, 264-265 
schemas in federation, 254-257 

Sequence Retrieval System and, 143 
use case, 68-69 
warehousing vs., 49 

fields, SRS, 130 
file 

hypertext markup language, 147-148 
probe intensity, 281 
semi-structured text, 40-41 

filler, 193 
filter, 208 
First Order logic, 413 
flat file, database vs., 78 
fiat file databank integration, 112-116 
foreign key, 413 
format 

data 
semi-structured text, 40-41 
updating of, 6 

exchange 
Kleisli, 156, 157 
self-describing, 156 
standards for, 282 
for third-party gene expression data 

integration, 291-293 
self-describing exchange, 156 

fragment, gene, 289 
definition of, 413 

frame-based system, 217 
frame of reference, terminological, 347 
FTP, 413 
fully structured data, semi-structured 

data vs., 387-388 
fully structured information system, 

82-84 
functional data model, 252-254 
functional genomics, 413 
functional programming language, 413 
functionality 

as implementation criterion, 379 
as user criterion, 383 

fuser, result, 261 
fusion 

data, 82 
definition of, 410 

vertical loop, 170 
future of bioinformatics, 394-396 
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Garlic project, 306-307 
GCG. See Genetics Computer Group 
GDB. See Genome DataBase 
GenAtlas, querying in, 85 
GenBank 

accession number, 44 
feature table of, 159 
identifiers in, 100-101 
Kleisli query system and, 150 
materialized vs. non-materialized 

approach and, 385-386 
search in, 66-67 

gene, definition of, 413 
gene annotation 

as integration challenge, 289-290 
standardization involving, 282 

gene annotation data mapping, 295-296 
gene annotation data space, 279 
gene chip microarray technology, 414 
gene data source, simple curated, 37-38 
gene discovery, 319 
gene expression, 399, 413 
Gene Expression Array (GXA), 283-284 
gene expression data management, 

277-299 
data spaces, 278-281 

biological sample, 278-279 
gene annotation, 279 
gene expression measurement, 

279-281 
GeneExpress system for, 282-284 
integration in, 285-290 

algorithms and normalization and, 
286-287 

array versions and, 285-286 
gene annotation and, 289-290 
sample data and, 288 
of third-party gene expression data, 

291-298 
variability and, 287-288 

gene expression measurement data space, 
279-281 

gene fragment, definition of, 413 
Gene Logic, DiscoveryLink and, 308 
Gene Nomenclature Committee 

(HGNC), 28, 402 
Gene Oncology (GO) Consortium, 29, 

217 
description of, 402 

gene product, 413 
GeneCards, search in, 6 6 - 6 7  

GeneChip, 413 
GeneChip microarray, 280 
GeneExpress, system information for, 427 
GeneExpress Data Warehouse (GXDW), 

283-284 
gene annotation component of, 290 

GeneExpress system, 282-284 
algorithms in, 286-287 
components of, 283 
deployment and update issues in, 

283-284 
integrating third-party expression data 

in, 291-298 
sample data in, 288 

general entity, 119-120 
generator 

code, 260 
logic plan, 360-361 

generic approach, 49-50 
query-driven approach vs., 77-78 
strengths and weaknesses of, 63 

generic benchmark, 374 
generic query optimization, 267-268 
genetics, 399 
Genetics Computer Group (GCG), 

307-308 
genome 

definition of, 414 
resources of, 398 

genome annotation pipeline, 26 
Genome DataBase (GDB) 

Kleisli query system and, 150-151 
materialized vs. non-materialized 

approach and, 385-386 
object identity and, 84-85 

genome project, 414 
genomic data source as integration 

challenge, 289-290 
Genomic Unified Schema, 385-386 
genomics, 414 

functional, 413 
research needs of, 12-13 

GenPept report, 153-154 
creating warehouse of, 164-165 

Glimpse search engine, 88 
global-as-view technique, 216 

definition of, 414 
in model-based mediation, 349, 350 

global integration schema, 266 
global schema, 45-46, 414 
Globus Pallidus External, 351 
GO databank in Sequence Retrieval 

System, 126-127 
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query planner, 208-211 
graphical interface, 179 
graphical user interface, for P/FDM, 269, 

271 
Grid, 414 
grid architecture, 91-92 
GUI, 414 
GXA. See Gene Expression Array 
GXDW. See GeneExpress Data 

Warehouse 
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hard-coding, 49-50 
legacy tools including, 80 
strengths and weaknesses of, 63 

hardwired access to data sources, 304 
hardwiring of mapping in GeneExpress 

system, 295 
hash table, 321 
heterogeneity 

in semantic data integration, 58-59 
syntactic and semantic, 212 

heterogeneous data format, 18, 19-20 
heterogeneous database, definition of, 

414 
HGNC. See Gene Nomenclature 

Committee 
hierarchy, role, 355-356 
hierarchy, in GeneExpress system, 293 
host variable, 414 
HTML. See hypertext markup language 

file 
HTTP, 414 
hub table, 126-127 
HUGO. See Human Genome 

Organization 
HUGO name, withdrawn or approved, 

84-85 
human computer interaction, 375 
Human Genome Initiative, 415 
Human Genome Project, 415 
Human Genome Organization (HUGO), 

28,402 
hybrid integration approach, 64-65 
hybridization, 415 
hypertext markup language file (HTML), 

147-148 
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ICode, 257-258,261,262-263 
ICode rewriter, 260 
ID, entry, hub table as, 126 
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pre-defined, 81 
scientific object, 84-85 

IBM DiscoveryLink middleware system, 
24 

ImMunoGeneTics information system, 
403 

implementation, experiment as, 76 
implementation criteria system 

evaluation, 376-381 
efficiency, 377-378 
extensibility, 378-379 
functionality, 379 
scalability, 379-380 
understandability, 380 
usability, 381 

in silico discovery kit (ISDK), 160, 161, 
415 

indexing, SRS support for, 121-122 
indexing tool output, 138 
industrial merger, 303 
information integration 

in bioinformatics, 213-215 
biologic ontologies, 216-217 
data challenges, 21-24 
data provenance and accuracy, 25-27 
knowledge based, 215-216 
meta-data specification, 24-25 
ontology, 27-30 
Web presentations, 30-31 

information integration system, K2, 
225-247. See also K2 information 
integration system 

information science, fusion with biology, 
2-3 

Informax, 307 
Infosleuth, 266 
initial process semantics, 357 
input, processing of, 138 
input/output format, 19 
integrated data driver, 241 
Integrated Taxonomic Information 

System, 402 
integrated view definition, 345 
integrated view of biology, 12 
integration 

schema, 421 
in system evaluation, 389 
view, 423 

integration, data, 4-10, 60-69 
browsing vs. querying, 46-48, 61-62 
as challenges, 21-24 
challenges of, 11-31 
concept, 4-5 
declarative query language, 63 
definition, 410 
development process, 9 
evaluation of, 9-10 
of flat file databanks with SRS, 

112-116 
of gene expression data, 285-290 

algorithms and normalization and, 
286-287 

array versions and, 285-286 
sample data and, 288 
gene annotation and, 289-290 
variability and, 287-288 

generic approach to, 63 
hard-coded approach to, 63 

hybrid approach to, 64-65 
issues of, 4-7 
procedural code, 63 
relational vs. non-relational, 64 
semantic, 58-60 
semantic query planning, 65-67 
specifications for, 7-8 
syntactic vs. semantic, 48-49 
technical approach, 8-9 
of third-party gene expression data, 

291-298 
data exchange formats for, 291-293 
data loading issues in, 296-297 
semantic data mapping issues in, 

293-296 
structural data transformation issues 

in, 293 
update issues in, 297-298 

tool-driven vs. data-driven, 91-92 
use case for, 45-46 
Web data sources, 66 

integration schema, global, 266 
intensional definitions, 348-349 
intensity file, probe, 281 
interaction, human computer, 375 

interface 
application programming, 407 
Entrez, 88-89 
graphical, 179 
in K2 information integration system, 

243-244 
keyword-search querying, 24 
Kleisli query system and, 166 
for P/FDM, 268-271 
to Sequence Retrieval System, 

139-141 
TAMBIS, 195-205 

constructing queries, 197-202 
exploring ontology, 195-197 
query processor, 205-212 
reasoning in query formulation, 

202-205 
intermediary, 8 
internal language, of K2 information 

integration system, 239-240 
internal schema, 254, 256 
International Classification of Diseases, 

Ninth Revision, 402 
International Organization for 

Standardization, 415 
International Union of Biochemistry and 

Molecular Biology (IUBMB), 28, 
403 

International Union of Pure and Applied 
Chemistry (IUPAC), 28,403 

is a hierarchy, 192 
ISA relationship, 415 
ISDK. See in silico discovery kitlSO. See 

International Organization for 
Standardization 

iteration, 207 
IUBMB. See International Union of 

Biochemistry and Molecular 
Biology 
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Java-based visual interface, for P/FDM, 
268 

Java DataBase Connectivity (JDBC), 229, 
415 

Java RMI, 241-242 
JDBC. See Java DataBase Connectivity 
join, 42 
joining data in DiscoveryLink query 

processing, 317-318 
joins, spatial, 337 
Journal of Nucleic Acid Research, 17 

K2 information integration system, 
225-247 

approach in, 229-232 
data model and languages in, 232-235 
data sources in, 240-242 
example of, 235-239 
impact of, 245-246 
internal language of, 239-240 
Kleisli vs., 228-229 
query optimization in, 242-243 
scalability of, 244-245 
system information for, 426 
user interfaces in, 243-244 

K2MDL, 231-232, 415 
KEGG. See Kyoto Encyclopedia of Genes 

and Genomes 
key, primary, 81 
keyword-search querying interface, 24 
KIND 

mediator prototype, 360-362 
system information for, 428-429 
understandability of, 381, 384 

Kleisli query system, 23-24, 147-184 
approach of, 151-153 
data model and representation in, 

153-157 
data sources in, 165-167 
DiscoveryLink and, 181-182 
efficiency of, 377-378 
functionality of, 383 
K2 information integration system vs., 

228-229 
motivating example for, 149-151 
Object-Protocol Model and, 182-183 
optimizations, 167-169 

context-sensitive, 171-174 
monadic, 169-170 
relational, 174-175 

query capability of, 158-163 
Sequence Retrieval System and, 

179-181 
system information for, 425 
understandability of, 384 
user interfaces, 175-179 

graphical, 179 
program language, 175-179 

warehousing capability of, 163-165 
knowledge, process, 340-341 
knowledge base, 90 
knowledge based information 

integration, TAMBIS, 215-216 
knowledge engineering, 353 
knowledge representation in model-based 

mediator system 
domain maps for, 352-357 

compilation of, 354-355 
definition of, 352-353 
deriving role hierarchy, 355-356 
as logic rules, 354-355 
parameterized role and concepts, 

356-357 
recursive concepts, 356 
reified roles as concepts, 353 
remarks, 355 
role hierarchy, 354 

process maps for, 357-360 
domain maps and, 358 
initial process, 357 
as logic rules, 359-360 
process elaboration and abstraction, 

358-359 
known gene, 416 
KRAFT, 266 
Kyoto Encyclopedia of Genes and 

Genomes (KEGG), 416 
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Laboratory Information Management 
System (LIMS), 13, 127 

definition of, 416 
GeneChip, 281 
output, 20 

language 
Daplex, 253 
extensible markup. See extensible 

markup language (XML) 
functional programming, 413 
of K2 information integration system, 

232-235,239-240 
query 

definition of, 419 
limitations of, 86-87 
SRS, 129-130 

legacy data and tools 
biologic, 78-79 
workflows, 79-80 

LENS, 86 
library, subentry, 116 
life sciences discovery process, 12-14 
LIMS. See Laboratory Information 

Management System 
link 

browsing, 89-90 
in browsing scientific objects, 100 

link-driven federation of databases,416 
link operator in SRS query language, 

132-133 

linking, databank, to Sequence Retrieval 
System, 130-133 

LION, 307 
LISP, 416 
list, definition of, 416 
list comprehension, 257 
literature reference, 401 
loader, object, in Sequence Retrieval 

System, 133-137 
loading 

data, 296-297 
from XML databank, 135 

local-as-view technique, 216 
definition of, 416 
in model-based mediation, 350-351 

local ontology, in model-based 
mediation, 344 

local schema, 45-46 
LocusLink, 403 
logic 

First Order, 413 
temporal, 90 

logic plan generator, 360-361 
logic rule 

domain map as, 354 
process map as, 359-360 

logics, description, 411 
LOGSPACE, 416 
long-term potentiation in nerve cell, 

340 
loop design, 76 
loosely coupled system, 250 
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maintenance, automated server, in 
Sequence Retrieval System, 
141-143 

management 
data, 35-69. See also data management 
multimedia, 99-100 
schema, 67-69 
space, 373 
time, 372-373 
traditional database, 80-81 

map 
domain, 335 

definition of, 412 
in neuroscience, 339-342 

process, 335 
definition of, 419 

simple process, 342 
subprocess, 359 

mapped role, 208 
mapping 

P/FDM mediator and, 263 
schema, 68 
semantic data, in integration of 

third-part expression data, 
293-296 

markup language, extensible. See 
extensible markup language 

MAS. See microarray suite, GeneChip 
MAS algorithm, 286-287 
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materialized approach, 385-386 
materialized view, 44, 416 
matrix 

evaluation, 372 
GXA, 283-284 

MBM. See model-based mediation 
measurement data space, gene 

expression, 279-281 
mediation, semantic, 364 
mediator 

definition of, 417 
sources and, 349-351 

mediator architecture, 256-261 
mediator database system, 22-24 
mediator system 

K2, 230-231 
description of, 237-239 

model-based, 335-366. See also 

model-based mediator system 
P/FDM, 249-272. See also P/FDM 

mediator 
prototype, 261-266 

MEDLINE, 66 
MEDLINE report, 153 
merger, industrial, 303 
meta-data, 56 

Sequence Retrieval System and, 
109-110, 111 

meta-data specification, 24-25 
meta language (ML), 417 
MGED. See Microarray Gene Expression 

Database society 
MIAME. See minimum information 

about microarray experiment 
microarray 

different versions of, 285-286 
DNA, 411-412 

microarray analysis, 404 
Microarray Gene Expression Database 

society (MGED), 281,417 
microarray suite algorithm, 286-287 
microarray suite (MAS), GeneChip, 280 
microarray technology, gene chip, 414 
Microsoft Distributed Component Object 

Model (DCOM), 91 
Microsoft Visual Basic, 40 
middleware, 417 
middleware system, DiscoveryLink, 24. 

see also DiscoveryLink 
minimum information about a 

microarray experiment (MIAME), 
281-282, 417 

mining, data, 87-89, 411 
mismatch probe, 280 
ML. See meta language 
model 

conceptual, 410 
cost, 372-374 
data, relational, 41-44 
ER, 412 
functional data, 252-254 
object-oriented, 418 
relational, 420 
sources and services, 206-208 

model-based mediator system, 335-366 
background of, 336-337 
Cell-Centered Database and SMART 

Atlas, 362-364 
challenges from neurosciences, 

338-342 
conceptual models and source 

registration at, 344-349 
for Cell-Centered Database, 

345-347 
contextual references, 349 
creating terminological frame of 

reference, 347 
intensional definitions, 348-349 
ontological grounding of OM (S), 

348 
semantics of relationships in, 

347-348 
domain maps for, 352-357 

compilation of, 354-355 
definition of, 352-353 
deriving role hierarchy, 355-356 
as logic rules, 354-355 
parameterized role and concepts, 

356-357 
recursive concepts, 356 
reified roles as concepts, 353 
remarks, 355 
role hierarchy, 354 

interplay between mediator and 
sources, 349-351 

KIND mediator prototype, 360-362 
process maps for, 357-360 

domain maps and, 358 
initial process, 357 
as logic rules, 359-360 
process elaboration and abstraction, 

358-359 
protagonists in, 343-344 
reason-able meta-data, 365-366 
related work, 364-365 

model-based mediation (MBM), 417 
module 

optimizer, 260 
reordering, 260 

monad approach, 228 
monadic optimizations, 169-170 
motif, 192, 204 
motivating use case, 45-46, 47 
Mouse Genome Database 

syntactic vs. semantic integration, 
48-49 

use case for integration, 45-46 
mRNA, 417 
multi-database approach, 251-252, 417 
multidisciplinary approach, 15 
multimedia data, 99-100 
multiple sequence alignment, 404 

name, HUGO, withdrawn or approved, 
84-85 

National Biological Information 
Infrastructure, 402 

NCBI Entrez, 51-52 

NCMIR, 338-339 
nested object in Sequence Retrieval 

System, 134 
Nested Relational Calculus (NRC), 152, 

163,418 
nested relationalized version of SQL, 

151-153 
nested structure in K2 system, 226 
neuroinformatics, 12 
neuroscience, data integration in, 

338-339 
nomenclature, sample data mapping, 

294-295 
non-databased query, 175-176 

non-materialized approach, 385-386 
non-materialized view, 44, 418 
non-relational data model, 64 

relational data model vs., 50 
nonsensical question, 201-202 
normal syntax, XML and, 118 
normalization, gene expression data and, 

286-287 
novel gene discovery, 319 
NP (NPTIME), 418 
NP-complete, 418 
NRC. See Nested Relational Calculus 
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Object Definition Language (ODL), 418 
object identity, scientific, 84-85 
object loader in Sequence Retrieval 

System, 133-137 
complex and nested objects, 134 
exporting objects to XML, 136-137 
links to create composite structures, 

136 
support for, 135 

Object Management Group (OMG), 22, 
28,419 

object model, 344 
object-oriented database, 308 
object-oriented interface to Sequence 

Retrieval System, 140-141 
object-oriented model, 418 
object-oriented programming, 253,254 
object-oriented technology, 22 
Object-Protocol Model (OPM), 24 

DiscoveryLink and, 308 
Kleisli query system and, 162, 182-183 
system based on, 85-86 
TAMBIS and, 213-214 

Object Query Language (OQL), 86, 419 
definition of, 418 
K2 system and, 228 

ODB-Tools, 365 
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ODMG. See Object Data Management 

Group 
OIL. See Ontology Inference Layer 
OLAP. See on-line analytical processing 
OMB. See Ontology for Molecular 

Biology 
OMG. See Object Management Group 
on-line analytical processing (OLAP), 

419 
one-world/multiple-world scenarios, 419 
ontological grounds of OM (S), 348 
ontology, 27-30 

biological, 216-217 
definition of, 419 
in model-based mediation, 344 
neuroscience, 339 
in system design, 85-86 
TAMBIS, 192-197, 214, 219-220 

Ontology Inference Layer (OIL), 418 
Ontology for Molecular Biology (OMB), 

217 
Open DataBase Connectivity (ODBC), 

418 
OPM. See Object-Protocol Model 
optimization, query, 95-98 

Daplex and, 264 
in DiscoveryLink, 31%319 
generic, 267-268 
in K2 information integration system, 

242-243 
Kleisli query system and, 16%169 

monadic, 169-170 
relational, 174-175 

semantic, 258,267 
optimizer module, 260 
OQL. See Object Query Language 
Oracle, 308 
Oracle wrapper, 311 
organ resources, 401 
organism resources, 401 
organization, data, 78-79 
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output, processing of, 138 
overloading, concept, 5 

~ p 

P (PTIME), 420 
P/FDM mediator, 249-272 

alternative architectures for 
integration, 250-252 

analysis, 266-272 
optimization, 267-268 
scalability, 271-272 
user interface, 268-271 

data sources, 265-266 
example of, 261-264 
functional data model, 252-254 
mediator architecture, 257-261 
query capabilities, 264-265 
schemas in federation, 254-257 
system information for, 427 

package, analysis, 165 

parameterized roles and concepts, 
356-357 

parser module, 257 
parsing tool output, 138 
patent database, 166 
pattern, in query processing 

delivery, 93 
statistical, 93 

pattern recognition, 405 
perfect-match probe, 280 
performance model for system 

evaluation, 371-376 
benchmarks, 374-375 
cost model, 372-374 
evaluation matrix, 372 

performance of DiscoveryLink, 327-329 
Perl codes, 167, 168 
pharmacogenomics, 400-401 

definition of, 420 
pharmacology research, 304 
phrase-based system, 217 
phylogeny and evolution biology, 12 
pipeline, genome annotation, 26 
planning, query, 94-95 
Plant Ontology Consortium, 402 
platform, establishing, 8 
pre-defined identity, 81 
pre-processing, 138 
precision, of text retrieval, 388-389 
primary key, 81,419 
Prisma, SRS, 141-143 
probe, definition of, 419 
probe array, 280 
probe array version, 285 
probe data, 280 
probe intensity file, 281 
probe pair, 280 
procedural access, declarative access vs., 

49 
procedural code, 63 
process 

life sciences discovery, 12-14 
map, definition of, 419 

process elaboration and abstraction, 
358-359 

process knowledge, capturing, 340-341 
process map, 335 

in neuroscience, 339 
simple, 342 

process maps for model-based mediator 
system, 357-360 

domain maps and, 358 
initial process, 357 
as logic rules, 359-360 
process elaboration and abstraction, 

358-359 
process semantics, initial, 357 
processing, query, 92-98 
processor, query, 205-212, 220. See also 

query processor 
profile, user, 7-8 
program, structural recursion, 162-163 
programming, object-oriented, 253 
programming interface, application, 407 

programming language, functional, 413 
projection, 42 
Prolog, 254 
propagation of errors, 26 
protein, calcium channel, 319-322 
protein domain, 400 
protein family, 400 
protein sequence, resources for, 397-398 
proteome, definition of, 419 
proteomics, 400, 419 
prototype mediator, 261-266 

KIND, 360-362 
provenance, 25-27 
provider 

data, 343 
view, 343-344 

Public Catalog of Databases, 17 
public data source, 17-18 
PubMed 

identifiers in, 100-101 
search in, 51-52, 66-67, 89 

query, 86-98 
AllGenes, 57, 58 
Boolean, 24 
browsing, 89-90 
cost of processing, 322-326 
Daplex, 252, 261,262, 264 

capabilities of, 264-265 
definition of, 420 
DiscoveryLink and, 305-306, 316-326 

architecture and, 309-310 
determining costs, 322-326 
example of, 319-322 
optimization and, 317-319 

efficiency of, 377-378 
old and new data, 68 
reasoning in formulation of, 202-205 
in relational database, 128 
searching and mining, 87-89 
semantics of, 90 
in Sequence Retrieval System, 128, 

129-130 
SQL, 127 
in TAMBIS, 191,197-202 
unanswerable, 226, 228, 229, 375-376 
to Web interface, 139 

query decomposition, 68 
query-driven approach, 77-78 
query execution plan, 65 
query language 

declarative, 63 
definition of, 420 
SRS, 129-130 
standard, 43-44 

query optimization 
in K2 information integration system, 

242-243 
semantic, 258 

query processing, 92-98 
biological resources in, 92-93 
optimization in, 95-98 
planning in, 94-95 
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query processor, TAMBIS, 205-212, relevance schema 
220 semantic, 364-365 conceptual, 44 

query planner, 208-211 source, 92-93 in database federation, 258 
sources and services model, 206-208 reliability, data provenance and, definition of, 41-42, 421 
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